Exploring Multiscale variability of monthly runoff time series of Diani River using fractal theory in Southern Guinea
Author Affiliations
- 1Département d’Hydrologie, Université de N’zérékoré, BP 50, N’zérékoré, Guinée
- 2Département d’Hydrologie, Université de N’zérékoré, BP 50, N’zérékoré, Guinée
- 3Département d’Hydrologie, Université de N’zérékoré, BP 50, N’zérékoré, Guinée
- 4Département d’Hydrologie, Université de N’zérékoré, BP 50, N’zérékoré, Guinée
Res. J. Physical Sci., Volume 13, Issue (2), Pages 1-5, August,4 (2025)
Abstract
Runoff time series modeling is necessary for hydrological applications, including understanding the evolution of river regimes and forecasting and controlling floods. However, in the Guinea republic, West Africa's water tower, the intrinsic characteristics involved in hydrological variables dynamics remain unknown. This preliminary work aims to explore, for the first time in Guinea, the multifractality and complexity properties of monthly runoff time series measured from 2000 to 2019 on the Diani River, which is one of the largest rivers in Guinea. To this end, the following parameters have been computed: Lyapunov exponent, Hurst exponent, Higuchi fractal dimension, width of the multifractal spectrum and spectrum asymmetry index. Numerical results indicate: i. a clear footprint of persistence and multifractality in the runoff time series irrespective of the time period. However, the persistence and multifractality degree depend on the time period considered ii. a sign of chaotic dynamic systems and predictive instability in runoff variations. iii. the predictive scheme based on the multifractality and persistence could be adapted for Diani river runoff prediction. The conclusions drawn from these results should prove useful for the validation of global and regional climate models.
References
- Kantelhardt, J.W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., & Havlin, S. (2006)., Long-term persistence and multifractality of precipitacion and river runoff records., Journal of Geophysical Research, 111, D01106. doi:10.1029/2005JD005881.
- Kantelhardt, J.W., Rybski, D., Zschiegner, S.A., Braun, P., Koscielny-Bunde, E., Livina, V., Havlin, S. & Bunde, A. (2003)., Multifractality of river runoff and precipitation: comparision of fluctuation analysis and wavelet methods., Physica A: Statistical Mechanics and its Applications, 330:240-245.
- Kantelhardt, J. W. (2009)., Fractal and multifractal time series. In: Meyers RA, editor., Encyclopedia of complexity and systems science. New York: Springer Science+ Business Media, LCC, 3754–3778.
- Koscielny-Bunde, E., Kantelhardt, J.W., Braun, P., Bunde, A. & Havlin, S. (2003)., Long-term persistence and multifractality of river runoff records: detrended fluctuation studies., Journal of Hydrology, 322, 120-137.
- Zhang, Q., Xu, C.Y., Chen, D.Y.Q., Gemmer, M., & Yu, Z.G. (2008)., Multifractal detrended fluctuation analysis of streamflow series of the Yangtze river basin, China, Hydrological., Process, 22, 4997-5003.
- Zhang, Q., Chong, Y.X., Yu, Z.G., Liu, C.L., & Chen, D.Y.Q. (2009)., Multifractal analysis of streamflow records of the East River basin (Pearl River), China., Physica A, 388 927-934.
- Li, E., Mu, X., Zhao, G., & Gao., P. (2015)., Multifractal detrended fluctuation analysis of streamflow in Yellow river basin, China., Water, 7: 1670-1686.
- Labat, D., Masbou, J., Beaulieu, E., & Mangin, A. (2011)., Scaling behavior of the fluctuations in stream flow at the outlet of karstic watersheds, France., Journal of Hydrologcal, 410, 162-168.
- Hirpa, F. A., Gebremichael, M., &Over, T. M. (2010)., River flow fluctuation analysis: effect of watershed area., Water Resources Research, 46, W12529. doi:10.1029/2009 WR009000.
- Tan, X., & Gan, T.W. (2017)., Multifractality of Canadian precipitation and streamflow, International., Journal of Climatol, 37 (S1), 1221-1236.
- Adarsh, S., Drisya, S.D., & Anuja, P.K. (2018b)., Analyzing the Hydrologic Variability of Kallada River, India Using Continuous Wavelet Transform and Fractal Theory. Wat., Cons. Sci. Eng., https://doi.org/10.1007/ s41101-018-0060-8.
- Adarsh, S., Drisya, S.D., Anuja, P.K., & Aggie, S. (2018)., Unravelling the scaling characteristics of daily streamflows of Brahmani river basin, India using Arbitrary Order Hilbert Spectral and Detrended Fluctuation Analyses., SN Applied Sciences, 1(2018),58. DOI: 10.1007/s42452-018-0056-1.
- Rego, C.R.C., Frota, H.O. and Gusmão, M.S. (2013)., Multifractality of Brazilian rivers., Journal of Hydrology, 495:208–215.
- Martínez, M.D., Lana, X., Burgueño, A., & Serra, C. (2007)., Lacunarity, predictability and predictive instability of the daily pluviometric regime in the Iberian Peninsula., Nonlinear Process Geophys, 14, 109-121.
- Lana, X., Martínez, M.D., Serra, C., & Burgueño, A. (2010)., Complex behavior and predictability of the European dry spell regimes., Nonlin. Process Geophys, 17, 499–512.
- Tatli, H., (2014)., Statistical complexity in daily precipitation of NCEP/NCAR reanalysis over the Mediterranean Basin., International Journal Climatology, 34, 155-161.
- Tatli, H. (2015)., Detecting persistence of meteorological drought via the Hurst exponent., Meteorological. Applications, 22, 763-769. https://doi.org/ 10.1002/ met.1519.
- Agbazo, N.M., Tall, M., & Sylla, M.B. (2023)., Nonlinear Trend and Multiscale Variability of Dry Spells in Senegal (1951–2010)., Atmosphere, 14, 1359. https://doi.org/ 10.3390/atmos14091359.
- Higuchi, T. (1988)., Approach to an irregular time series on the basis of the fractal theory., Physics. D Nonlinear Phenomenon, 31, 277-283.[CrossRef]
- Raghavendra, B.S., & Narayana Dutt, D. (2010)., Computing Fractal Dimension of Signals Using Multiresolution Box-Counting Method., World Academy of Science, Engineering and Technology, 61, 1223-1238.
- Benavides-Bravo, F.G., Martinez-Peon, D., Benavides-Ríos, Á.G., Walle-García, O., Soto-Villalobos, R., & Aguirre-López, M.A. (2021)., A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent., Mathematics, 9, 2656. https://doi.org/10.3390/math9212656.
- Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde A., & Stanley, H.E. (2002)., Multifractal detrended fluctuation analysis of nonstationary time series., Physica A: Statistical Mechanics and its Applications, 316, 87–114.
- Lai, D., & Chen, G. (1998)., Statistical Analysis of Lyapunov exponent from time series: A Jacobian approach., Math. Compt. Modeling, 27(7), 1-9.
- Sprott, J.C. (2003)., Chaos and Time series analysis., Oxford University Press.
- Liu, Z., Wang, L., Yu, X., Wang, S., Deng, C., Xu, J., Chen, Z., & Bai, L. (2017)., Multi-scale response of runoff to climate fluctuation in the headwater region of the Kaidu River in Xinjiang of China., Atmos. Sci. Lett., 18, 230-236.
- Montes, R. M. & Quiñones, R.A. (2018)., Long-range dependence in the runoff time series of the most important Patagonian river draining to the Pacific Ocean., New Zealand Journal of Marine and Freshwater Research, 52(2), 264-283, doi:10.1080/00288330.2017.1383278.
- da Silva, A.S.A., Stosic, T., Arsenic, I., Menezes, R.S.C., & Borko Stosic, B. (2023)., Multifractal analysis of standardized precipitation index in Northeast Brazil., Chaos Solitons Fractals, 172, 113600.