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Abstract 

Runoff time series modeling is necessary for hydrological applications, including understanding the evolution of river 

regimes and forecasting and controlling floods. However, in the Guinea republic, West Africa's water tower, the intrinsic 

characteristics involved in hydrological variables dynamics remain unknown. This preliminary work aims to explore, for the 

first time in Guinea, the multifractality and complexity properties of monthly runoff time series measured from 2000 to 2019 

on the Diani River, which is one of the largest rivers in Guinea. To this end, the following parameters have been computed: 

Lyapunov exponent, Hurst exponent, Higuchi fractal dimension, width of the multifractal spectrum and spectrum asymmetry 

index. Numerical results indicate: i. a clear footprint of persistence and multifractality in the runoff time series irrespective 

of the time period. However, the persistence and multifractality degree depend on the time period considered ii. a sign of 

chaotic dynamic systems and predictive instability in runoff variations. iii.  the predictive scheme based on the multifractality 

and persistence could be adapted for Diani river runoff prediction. The conclusions drawn from these results should prove 

useful for the validation of global and regional climate models. 
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Introduction 

Hydrologists have numerous roles, including operational 

management of hydraulic structures, modeling hydrological 

phenomena, understanding the evolution of river regimes, 

forecasting and controlling floods. To reach these goals, the 

understanding of the intrinsic characteristics of hydrological 

variables is essential
1
.  For these requirements numerous studies 

related to the invariance regimes, complexity and multifractal 

analysis of the hydrological variables records have been 

developed in several countries around the world.  For instance, 

the multifractal characteristics of long term runoff records have 

been studied by Kantelhardt et al.
2,3

; Koscielny-Bunde et al.
4
; in 

China by Zhang et al.
5
; Zhang et al.

6 
; Li et al.

7
; in France by 

Labat et al.
8
; in Georgia in the southeastern USA by Hirpa et 

al.
9
; in Canada by Tan and Gan

10
; in India by Adarsh et al.

11,12
, 

in Brazil by Rego et al.
13

. 

 

Even though many studies have focused on the multifractal 

analysis of runoff time series in different parts of the globe, to 

our best knowledge, in Guinea, West Africa's water tower, the 

multifractal properties of hydrological variables remain 

unknown, and the dynamic of runoff time series recorded from 

Guinean rivers are not yet investigated in fractal framework. 

Such gap in research work could be related to three main 

reasons: the unavailability of hydrological variables over a long 

period, the presence of a large number of missing values in the 

hydrological variables time series in most of the country’ rivers, 

and the measurement networks are less densely populated. The 

first step towards gap filling is to understand the multifractal 

and chaotic characteristics of the available hydrological 

variables time series. 

 

This preliminary work aims to explore, for the first time in 

Guinea, the multifractal and complexity properties of monthly 

runoff time series measured on the Diani River, which is one of 

the largest rivers in southern Guinea. In the following section, 

we describe the data and present the methods. The subsequent 

section deals with the results analysis, and finally, the 

conclusions are drawn. 

 

Materials and Methods 

Study area and Data description: The Diani River (Figure-1) 

is one of most important rivers in Guinea. It is located in the 

forest region, precisely in Macenta’s prefecture, sub-prefecture 

of N'zébéla. The Diani river is the only one between the 

southern guinea rivers, having a gauging station, which is 

located at the Diani bridge, 4km from N'zébéla on the national 

road linking Macenta to N'Zérékoré. It rises in the classified 

forest along the Milo River, near Vassérédou and delimits 

Guinea from Liberia along a 50 km stretch. The Diani River 

serves as a natural border between Liberia and Guinea, and 

enters Liberian territory near Banié (Youmou Prefecture), where 

it is known as the Saint Paul River. The Diani River watershed, 

which is one of the three main watersheds of Guinea Forest, has 

a surface area of 9333 Km
2 

with an average gradient of 

3.31m/Km. 
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From Figure-2, it can be seen that the runoff from 2000 to 2019 

at Diani bridge hydrological station in Diani river has certain 

inconsistent fluctuations, reflecting the strong variability of this 

runoff series. 

 

 
Figure-1: Geographic location (a) of Guinea in Africa, (b) of 

forest Guinea in Guinea, (c) Macenta in forest Guinea, (d) 

N’zébéla in Macenta, (e) Diani river in N’zébéla. 

 

 
Figure-2: Temporal variation of monthly runoff measured at 

Diani Pont hydrological station from 2000-2019. 

 

Methods: Rescaled-Range (R/S) method: The one-

dimensional R/S method is briefly described by the following 

steps
14-18

: 

One computes the subsets of runoff time series mean,  ̅  
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   , where {  |       } are studied records and 1 ≤ τ 

≤ N.  

One computes the range (  ) and standard deviation (  ) 
respectively by (1) and (2): 
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where, 1 ≤ τ ≤ N 

One computes the rescaled range as (   )  =      . 
One determines the Hurst exponent (    ) by plotting the 
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Fractal Dimension Analysis: If X is a time series, with length 

N, noted as (  )       then Higuchi’s method can be briefly 

outlined as follows
19-21

: Reconstruct time sequence and calculate 

the average length as: 
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Where the symbol [y] represents the bigger integer part of y, 

  {        } and   {     }. In this work,       . 

 

Compute the total fractal length as follows: 
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                   (5) 

 

Deduce the Higuchi fractal dimension as the opposite of the 

slope from equation (6) in log-log plot 

    
                 (6) 

 

Multifractal Analysis: To reveal the multi scaling properties 

involved in runoff time series, the multifractal detrended 

fluctuation analysis, MFDFA developed by Kantelhardt et al.
22 

is adopted. In this method, the generalized Hurst exponen t ( ) 
is deduced through the non linear relationship between   ( )  

and the timescale as follows: 

  ( )    
 ( )                (7) 

  ( ) is the function of fluctuations.         ( ) is the 

Hurst exponent obtained from MFDFA. 

 

The multifractal spectrum  ( ) and Hölder exponent ( ) are 

related to  ( ) by the means of the first-order Legendre 

transforms as follows: 

   ( )   
 ( )

  
 Legendre  ( )   [   ( )]        (8) 

            .  

 

   denotes the multifractal spectrum width. The larger the   , 

the stronger is the multifractality of the time series.    is the 

corresponding to the maximum  ( ) 
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(       ) (       )
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    is the spectrum symmetry index.     is equal to 0, ˂0 and 

˃0for symmetric, left-skewed and right-skewed shapes, 

respectively. 
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Where       and        are the Hurst expoenent obtained 

from rescaled-Range (R/S) and MFDFA method, respectively. 
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   value between 0 and 0.5 indicates that the runoff series are 

anti-persistent, thus, two adjacent events have an inverse 

correlation ;    value between 0.5 and 1, implies that the runoff 

series are persistent ;     value equal to 0.5 signifies that there 

are no changes and runoff series are uncorrelated and 

random
3,14,15

. The uncertainty degree on the predictability of the 

runoff time series is quantified by means of the Lyapunov 

exponents, which is computed according to the algorithms 

proposed by Lai, D., & Chen, G.
23

 and Sprott, J.C.
24

.  

 

Results and Discussion 

The temporal variation of the Hurst exponent (  ) of the 

monthly runoff time series recorded during 2000-2019 period 

for Diani River is shown in Figure-3a and the 95% confidence 

limits of Pearson coefficent related to Hurst exponent 

computation are shown in Figure-3b for each sub period. From 

the results (Figure-3a) it is observed that whatever the time-

period (2000-2009, 2010-2019 and 2000-2019), the Hurst 

exponent is estimated by Pearson coefficient limits between 

0.975 and 0.985, indicating the robustness of the linear used to 

fit the fluctuation functions. From the results (Figure-3b) it is 

noted that the Hurst exponent values exceed 0.5 for the both 

sub-periods (2000-2009 and 2010-2019) and 2000-2019 period. 

During 2000-2019, the Hurst exponent (  ) can be classified as 

follows   (         )    (         )    (     
    ).  
 

Moreover, independently of the time period considered, the 

Hurst exponent values vary between 0.86 and 0.96, which is 

great than 0.73, reported by Kantelhardt et al.
1 

as universal 

value. These findings indicate clearly a long-term persistence in 

the runoff time series irrespective of the time period. However, 

the persistence severity decreases from the first sub period to the 

second. Thus, if a decrease (increase) is observed in the runoff 

levels during a period of time, the similar decrease (increase) is 

expected to continue during a similar period of time. Overall, 

this results suggest that the prediction schemes based on the 

trends of the preceding elements will be appropriate for 

Dianiriver’s runoff timeserie prediction. 

 

Figure-4 presents the temporal variation of the first positive 

Lyapunov exponent (  ) and Higuchi fractal dimension (HFD) 

of runoff time series. From the results (Figure-4a) it is noted that 

the Lyapunov exponent values are between 0.025 and 0.15, with 

  (         )    (         )    (         ), 
suggesting a predictive instability in runoff dynamics and 

compared to others, 2010-2019 is the time period in which the 

largest erroneous in long-term predictions of runoff time series 

is could be related on the starting values uncertainties.  

 

From the results (Figure-4b) it is noted that all values of HFD 

are non-integer (vary between 1.5 and 2), clear footprint of 

chaotic dynamic systems with fractal characteristics in runoff 

variations during 2000-2019 period. The results obtained above 

indicated that the fractal framework is insufficient to better 

understand the multi scaling properties of the runoff series. 

Therefore, the multifractal characterization of the runoff series 

is necessary. 

 

 
Figure-3: (a) Temporal variation of Hurst exponent of runoff 

time series, (b) 95% confidence limits of Pearson coefficient. 

 

Figure-5 depicts the multifractal spectrum of the runoff time 

series during 2000-2009; 2010-2019 and 2000-2019. The runoff 

time series exhibit multifractal spectrum with distinct shape 

depending on the time period. Moreover, the multifractal 

spectrum shapes are all convex parabolas, confirming the 

multifractal behaviour and greater complexity of runoff time 

series for Diani River. 

 

 
Figure-4: Temporal variation of: (a) Lyapunov exponent, (b) 

Higuchi fractal dimension (HFD) of runoff time series. 
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Figure-5: Multifractal spectrum of runoff time series during: 

2000-2009; 2010-2019 and 2000-2019. 

 

The temporal variation of the multifractal spectrum width (  ) 

and the spectrum asymmetry index (SAI) during 2000-2019 

period forrunoff time series is shown in Figure-6. From Figure-

6a, it is noted that whatever the time period considered,    

values are nonzero and greater than zero, with   (     
    )    (         )    (         ). Therefore, 

scaling features and multifractality are present in runoff time 

series for Diani River, however, to a varying degree. The 

highest    obtained during 2010-2019 period suggests that 

compared to others time periods, in this sub period, the runoff 

time series present the greatest irregularity, heterogeneity, 

intermittencies and multifractality. Thus, changes in the runoff 

time series during 2010-2019 period are more extreme and the 

prediction will be the most difficult in this sub period. From 

Figure-6b, it is observed that SAI values are positive. These 

results suggest that the multifractal spectrum of each sub period 

is characterized by a left-hand deviation, indicating some degree 

of local high fluctuations. Thus, in Diani River high fluctuation 

is responsible for runoff time serie dynamics. Qualitatively, our 

findings regarding the persistency and multifractality 

characteristics of runoff align with results reported in other 

regions of the world, such as China
7,25

, Canada
10

, New Zealand 
26

 and Brazil
27

. 

 

 
Figure-6: Temporal variation of (a) multifractal spectrum (  ), 

(b) spectrum symmetry index (SAI) of runoff time series. 

Conclusion 

This research work aimed to investigate for the first time the 

intrinsic multifractal and chaotic characteristics involved in 

runoff time series dynamics recorded from 2000 to 2019 in 

Diani River by using Fractal Theory. For this end the 2000-2019 

period is divided in two sub periods: 2000-2009 and 2010-2019. 

From this work, the following conclusions can be drawn: 1. 

Independently of the time period, runoff series are persistent and 

multifractal in Diani River. However, the persistency level and 

the multifractality severity depend on the time period 

considered. ii. predictive instability is identified in the 

mechanism governing runoff series. iii. It seems that the 

predictive scheme based on multifractality and the trend of the 

previous elements is adapted for Dianireiverrun off prediction. 

This study is a preliminary work on the modeling of runoff time 

serie in Guinea. Furthermore, the limitation of the present study 

is related to the using of only one hydrological station. 

However, this situation can be explained by the unavailability of 

hydrological variables over a long period in Guinea, the 

presence of a large number of missing values in the hydrological 

variables time series in most of the country’ rivers, and by the 

fact that the measurement networks are less densely populated. 
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