New Ridge Parameters for Generalized Ridge Regression
Author Affiliations
- 1Y.C. Mahavidyalaya, Halkarni, Tal- Chandgad, Kolhapur, MS - 416552, India
Res. J. Mathematical & Statistical Sci., Volume 13, Issue (3), Pages 1-13, September,12 (2025)
Abstract
In Classical Linear Regression, in the presence of multicollinearity there are several methods to get rid of this problem and one of the most famous one is the ridge regression. In this paper, a new procedure to estimate the ridge parameters for Generalized Ridge Regression (GR) estimator is presented. We compared our estimators with other 30 estimators proposed elsewhere earlier according to mean squared error (MSE) criterion. All results are calculated by a Monte Carlo simulation. According to simulation study, our estimators perform equivalently to the estimator under the influence of multicollinearity. Also perform better than the others in the sense of MSE.
References
- Hoerl A.E., Kennard, R.W. (1970)., Ridge regression: Biased estimation for nonorthogonal problems., Technometrics, 12, 55–67.
- Montgomery, D.C., Peck, A.E. and Vining, G.G. (2001)., Introduction to Linear Regression Analysis., New York: Wiley.
- Hoerl A.E., Kennard, R. W., Baldwin, K. F. (1975)., Ridge regression: Some simulations., Communications in Statistics - Theory and Methods, 4, 105–123.
- Mermi S., G¨oktas¸, A., Akkus¸, ¨O. & Necla G. (2024)., A new robust ridge parameter estimator having no outlier and ensuring normality for linear regression model., Journal of Radiation Research and Applied Sciences, 17(1), 100788.
- Ishwaran H. and Rao J. S. (2011)., Consistency of spike and slab regression., Statist. Probab. Lett., 81(12), 1920–1928.
- Hemmerle, W. J. (1975)., An Explicit Solution for Generalized Ridge Regression., Technometrics, 17, 309-314.
- Firinguetti, L. (1999)., A generalized ridge regression estimator and its finite sample properties., Communications in Statistics-Theory and Methods, 28(5), 1217-1229.
- Muniz, G., Kibria, B.M.G., Kristofer, M. and Shukur, G. (2012)., On Developing Ridge Regression Parameters: A Graphical investigation., SORT-Statistics and Operations Research Transactions, 36(2), 115-138.
- McDonald, G.C. and Galarneau, D.I. (1975)., A monte carlo evaluation of some ridge-type estimators., J. Amer. Statist. Assoc., 70, 407–416.
- Lawless, J.F. and Wang, P. (1976)., A Simulation Study of Ridge and Other Regression Estimators., Communications in Statistics- Theory and Methods, 14, 1589-1604
- Myoken H. and Nagoya Y. U. (1977)., Adjustments for Regression Parameters., Metrika, 24, 113.
- Hemmerle, W. J. and Brantle, T. F. (1978)., An explicit and constrained generalized ridge estimation., Technometrics, 20, 109–119.
- Masuo, N. (1988)., On the almost unbiased ridge regression estimation., Communications in Statistics - Simulation and Computation, 17(3), 729-743.
- Troskie, C. G. and Chalton, D. O. (1996)., A Bayesian estimate for the constants in ridge regression., South African Statistical Journal, 30, 119–137.
- Alkhamisi, M., Khalaf, G. and Shukur, G. (2006)., Some modifications for choosing ridge parameters., Communications in Statistics - Theory and Methods, 35, 2005–2020.
- Alkhamisi, M.A. and Shukur, G.A. (2007)., Monte carlo study of recent ridge parameters., Communications in Statistics - Simulation and Computation, 36, 535–547.
- Batah, F.S., Ramnathan, T. and Gore, S.D. (2008)., The efficiency of modified jackknife and ridge type regression estimators: a comparison., Surveys in Mathematics and its Applications, 24(2), 157-174.
- Muniz, G. and Kibria, B. M. (2009)., On some ridge regression estimators: An empirical comparison., Communications in Statistics - Simulation and Computation, 38, 621–630.
- Dorugade, A.V. (2014)., New ridge parameters for ridge regression., Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 94-99.
- Lukman, A, F, and Ayinde, K. (2017)., Review and classifications of the ridge parameter estimation techniques., Hacettepe Journal of Mathematics and Statistics, 46(5), 953-967.
- Lukman, A. F., Oluyemi, O. A., Akanbi, O. B., & Clement, O. A. (2018)., Classification-based ridge estimation techniques of Alkhamisi methods., Journal of Probability and Statistical Science, 16, 165–181.
- Kibria, B. M. G., & Lukman, A. F. (2020)., A new ridge-type estimator for the linear regression model: Simulations and applications., Scientifica. https://doi.org/10.1155/ 2020/9758378
- Qasim, M., Mansson, K., & Kibria, B. M. G. (2021)., On some beta ridge regression estimators: Method, simulation and application., Journal of Statistical Computation and Simulation, 91, 1699–1712.
