Study of the Physical, Mechanical, Thermodynamic and Electronic Properties in volume of TiN
Author Affiliations
- 1Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Groupe de Recherche sur les Propriétés Physiques et Chimiques des Matériaux, Congo Brazzaville and Association Alpha Sciences Beta Technologies, Congo Brazzaville
- 2Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Groupe de Recherche sur les Propriétés Physiques et Chimiques des Matériaux, Congo Brazzaville
- 3Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Groupe de Recherche sur les Propriétés Physiques et Chimiques des Matériaux, Congo Brazzaville and Center for Geological and Mining Research, Congo Brazzaville
Res. J. Material Sci., Volume 13, Issue (1), Pages 1-9, August,16 (2025)
Abstract
In this study, we investigated the mechanical and electronic properties of cubic-phase titanium nitride (TiN) using Density Functional Theory (DFT) with the Generalized Gradient Approximation (GGA). The geometric optimization results reveal that the lattice parameter a is 3.003738 Šand the volume V is 56.440305 ų. The calculated elastic constants, C11 = 602.57615 GPa and C12 = 115.48060 GPa, confirm the stability of the cubic phase of TiN. The compressibility modulus B is 277.84578 GPa, and Young's modulus E is 469.62823 GPa, indicating significant mechanical rigidity. The Debye temperature is 558.56408 K, reflecting strong lattice vibrations and high thermal stability. Additionally, our analysis shows that cubic TiN exhibits anisotropy in the transverse propagation mode, particularly in the [100] and [110] directions. The electronic structure reveals a band gap of 0.642 eV, characteristic of a semiconductor. These results underscore TiN's mechanical robustness, thermal stability, and semiconducting nature.
References
- Lütjering, Gerd, and James C. Williams (2007)., Titanium matrix composites., Titanium. Berlin, Heidelberg: Springer Berlin Heidelberg. 313-328.
- Trengove, L. (1972)., William Gregor (1761–1817) discoverer of titanium., Annals of Science, 29(4), 361-395.
- Dzabana Honguelet, A., et al. (2024)., Properties of TiN: A DFT Study., University of Marien NGOUABI.
- Nsongo, T., et al. (2017)., Study on Titanium Thin Films., Journal of Materials Science.
- Grosso, S. (2017)., Architectural Coatings of Ti, TiN and TiOx Grown by Flow Sputtering on Stainless Steel Wires., https://www.theses.fr/2017GREAI083
- Gockel, B. T., Kolesar, R. S., & Rollett, A. D. (2016)., Experimental study of an aerospace titanium alloy under various thermal and tensile loading rate conditions., Integrating Materials and Manufacturing Innovation, 5(1), 245-258.
- Eboungabeka, A. D., Trigo, E. R. M. E., & Nsongo, T. (2021)., Reactivity of titanium dental implants in salivary environment in the presence of foods consumed in the Republic of the Congo., Advances in Materials Physics and Chemistry, 11(5), 93-99.
- Mimboui, Y. J. M., Honguelet, A. S. D., & Nsongo, T. (2023)., Study of the physical and mechanical properties of titanium in volume by the MEAM method., Modeling and Numerical Simulation of Material Science, 14(1), 58-68.
- Kohn, W., & Sham, L. J. (1965)., Self-consistent equations including exchange and correlation effects., Physical review, 140(4A), A1133.
- Perdew, J. P., Burke, K., & Ernzerhof, M. (1996)., Generalized gradient approximation made simple., Physical review letters, 77(18), 3865.
- Monkhorst, H. J., & Pack, J. D. (1976)., Special points for Brillouin-zone integrations., Physical review B, 13(12), 5188.
- Zunger, A., et al. (1980)., Self-Consistent Pseudopotential Method., Physical Review B.
- Hohenberg, P., & Kohn, W. (1964)., Inhomogeneous electron gas., Physical review, 136(3B), B864.
- Hill, R. (1952)., The elastic behaviour of a crystalline aggregate., Proceedings of the Physical Society. Section A, 65(5), 349.
- Voigt, W. (1928)., Lehrbuch der Kristallphysik (BG Teubner Leipzig und Berlin) 980 S., Reproduced 1966 Spring Fachmedien Wiesbaden GmbH.
- Reuss, A. (1929)., Berechnung der Fließgrenze von Mischkristallen., Zeitschrift für Angewandte Mathematik und Mechanik.
- Born, M., & Huang, K. (1954)., Dynamical Theory of Crystal Lattices., Oxford University Press.
- Grosso, S., et al. (2017)., Architectural Coatings of Titanium., Coatings Journal.
- Perdew, J. P. (1997)., Generalized gradient approximation made simple., Phys. Rev. Lett., 77, 3868.
- Williams, J.C, and Thompson, A.W (1980)., Structure-Property Relationships in Titanium Alloys., Annual Review of Materials Science.