Therapeutic Potential of Ebselen-Driven Wound Repair in Mercury-Induced Cell Injury in NRK52E Renal Epithelial Cells
Author Affiliations
- 1Department of Zoology, Maharani Janki Kunwar College, Bettiah, West Champaran, Bihar-845438, India
- 2Department of Zoology, Maharani Janki Kunwar College, Bettiah, West Champaran, Bihar-845438, India
Res. J. of Pharmaceutical Sci., Volume 14, Issue (2), Pages 38-51, December,30 (2025)
Abstract
Mercury, a toxic environmental pollutant, is readily available in the biogeochemical cycle and poses serious health risks even at trace levels due to its tendency to bioaccumulate. Among its forms, methylmercury (MeHg) is the most toxic, capable of crossing both the placental barrier and blood-brain barrier. This study investigates the cellular toxicity of MeHg on normal rat kidney epithelial cells (NRK52E) and evaluates the protective potential of Ebselen, an organic selenium compound with antioxidant and metal-chelating properties. NRK52E cells were exposed to 0.1 µM and 1 µM concentrations of MeHg, both alone and in combination with 10 µM Ebselen. Multiple assays including wound healing for cell migration, DCFDA for reactive oxygen species (ROS) generation, Luminex multiplex assay for key kidney toxicity markers, invasion assay and cell cycle analysis were performed to assess the extent of toxicity and protection. MeHg exposure led to a significant increase in ROS levels, accompanied by dysregulation of cell adherence and wound healing. These molecular changes were associated with disrupted cell behaviour, impaired wound healing, and altered cell cycle progression, all indicating cellular toxicity. However, co-treatment with Ebselen significantly reversed these effects. ROS levels were reduced and cell cycle distribution improved. Ebselen’s ability to restore cellular homeostasis demonstrates its strong protective effect against MeHg-induced nephrotoxicity. This study highlights the potential of Ebselen as a therapeutic agent for mitigating mercury-induced kidney cell damage. It emphasizes the importance of early detection of nephrotoxic effects and timely antioxidant intervention to prevent long-term renal impairment caused by environmental toxins like MeHg.
References
- Ke, T., Gonçalves, F. M., Gonçalves, C. L., Dos Santos, A. A., Rocha, J. B. T., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A. B., & Aschner, M. (2019)., Post-translational modifications in MeHg-induced neurotoxicity., Biochimica et biophysica acta. Molecular basis of disease, 1865(8), 2068–2081. https://doi.org/10.1016/j.bbadis.2018.10.024
- Branco, V., Coppo, L., Solá, S., Lu, J., Rodrigues, C. M. P., Holmgren, A., & Carvalho, C. (2017)., Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury., Redox Biology, 13, 278–287. https://doi.org/ 10.1016/j.redox.2017.05.024
- Farina, M., Aschner, M., & Rocha, J. B. (2011)., Oxidative stress in MeHg-induced neurotoxicity., Toxicology and applied pharmacology, 256(3), 405–417. https://doi.org/ 10.1016/j.taap.2011.05.001
- Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020)., The Effects of Cadmium Toxicity., International journal of environmental research and public health, 17(11), 3782. https://doi.org/10.3390/ijerph1711 3782
- Lu, Q., Cai, Y., Xiang, C., Wu, T., Zhao, Y., Wang, J., … Zou, L. (2021)., Ebselen, a multi-target compound: its effects on biological processes and diseases., Expert Reviews in Molecular Medicine, 23, e12. doi:10.1017/erm.2021.14
- Amporndanai, K., Meng, X., Shang, W. et al. (2021)., Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives., Nat Commun, 12, 3061 (2021). https://doi.org/10.1038/s41467-021-23313-7
- Miyano, T., Suzuki, A., & Sakamoto, N. (2021)., Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells., PLoS One, 16(12), e0261345.
- Karaboga, Ihsan & Okuyan, Hamza Malik & Doğan, Serdar & Ayçiçek, Şeyda & Çakıroğlu, Hüseyin. (2025)., Ebselen Alleviates Sepsis‐Induced Acute Kidney Injury by Regulating Endoplasmic Reticulum Stress, Apoptosis, and Oxidative Stress., Veterinary Medicine and Science, 11. 10.1002/vms3.70318.
- Han, B., Lv, Z., Han, X., Li, S., Han, B., Yang, Q., Wang, X., Wu, P., Li, J., Deng, N., & Zhang, Z. (2022)., Harmful Effects of Inorganic Mercury Exposure on Kidney Cells: Mitochondrial Dynamics Disorder and Excessive Oxidative Stress., Biological trace element research, 200(4), 1591–1597. https://doi.org/10.1007/s12011-021-02766-3
- Azad, G. K., & Tomar, R. S. (2014)., Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways., Molecular biology reports, 41(8), 4865–4879. https://doi.org/10.1007/s11033-014-3417-x
- Ransy, C., Vaz, C., Lombès, A., & Bouillaud, F. (2020)., Use of H2O2 to Cause Oxidative Stress, the Catalase Issue., International journal of molecular sciences, 21(23), 9149. https://doi.org/10.3390/ijms21239149
- Xiaoyang Li, Jingjing Pan, Yanfeng Wei, Linlin Ni, Bin Xu, Yu Deng, Tianyao Yang, Wei Liu, (2021)., Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity., Neuro Toxicology, 85, 33-46. https://doi.org/10.1016/j.neuro.2021.05.002
- Verma, S., Singh, P., Khurana, S., Ganguly, N. K., Kukreti, R., Saso, L., Rana, D. S., Taneja, V., & Bhargava, V. (2021)., Implications of oxidative stress in chronic kidney disease: a review on current concepts and therapies., Kidney research and clinical practice, 40(2), 183–193. https://doi.org/10.23876/j.krcp.20.163
- Yao, D., et al. (2023)., Molecular insights into methylmercury-induced redox imbalance and protective role of antioxidants., Free Radical Biology and Medicine, 201, 123–133.
- Abdelazim, A. M., & Abomughaid, M. M. (2024)., Oxidative stress: an overview of past research and future insights., All Life, 17(1). https://doi.org/10.1080/26895293. 2024.2316092
- Perez-Araluce, M., Jüngst, T., Sanmartin, C., Prosper, F., Plano, D., & Mazo, M. M. (2024)., Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases., Biomimetics, 9(1), 23.
- Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024)., Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases., International journal of molecular sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264
- Farina, M., Rocha, J. B. T., & Aschner, M. (2011)., Mechanisms of methylmercury-induced neurotoxicity: Evidence from experimental studies., Life Sciences, 89(15 16), 555–563.
- Yoon, Y., Kim, Y., Kim, S. Y., et al. (2013)., Ebselen attenuates renal ischemia-reperfusion injury in rats., American Journal of Physiology-Renal Physiology, 304(8), F919–F927.
- Kurauchi, Y., et al. (2022)., Protective effect of Ebselen on cisplatin-induced kidney injury through Nrf2 pathway activation., Toxicology and Applied Pharmacology, 449, 116105. https://doi.org/10.1016/j.taap.2022.116105
- Lu, Q., Cai, Y., Xiang, C., Wu, T., Zhao, Y., Wang, J., … Zou, L. (2021)., Ebselen, a multi-target compound: its effects on biological processes and diseases., Expert Reviews in Molecular Medicine, 23, e12. doi:10.1017/erm.2021.14
- Vaidya, V. S., Ferguson, M. A., & Bonventre, J. V. (2010)., Biomarkers of acute kidney injury., Annual Review of Pharmacology and Toxicology, 48, 463–493.
- Ghosh, R., et al. (2022)., Antioxidant-based strategies for combating heavy metal toxicity: focus on selenium compounds., Antioxidants, 11(9), 1702. https://doi.org/ 10.3390/antiox11091702
- Kaur, G., et al. (2021)., Oxidative stress and methylmercury nephrotoxicity: emerging insights into molecular mechanisms., Journal of Applied Toxicology, 41(4), 552 563. https://doi.org/10.1002/jat.4091
- Li, B., Qiao, C., Jin, X., & Chan, H. M. (2021)., Characterizing the Low-Dose Effects of Methylmercury on the Early Stages of Embryo Development Using Cultured Human Embryonic Stem Cells., Environmental health perspectives, 129(7), 77007. https://doi.org/10. 1289/EHP7349
- Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025)., Heavy metals: toxicity and human health effects., Archives of toxicology, 99(1), 153–209. https://doi.org/10.1007/s00204-024-03903-2
- Yao, D., et al. (2023)., Molecular insights into methylmercury-induced redox imbalance and protective role of antioxidants., Free Radical Biology and Medicine, 201, 123–133.
- Navas, T., Kinders, R. J., Lawrence, S. M., Ferry-Galow, K. V., Borgel, S., Hollingshead, M. G., Srivastava, A. K., Alcoser, S. Y., Makhlouf, H. R., Chuaqui, R., Wilsker, D. F., Konaté, M. M., Miller, S. B., Voth, A. R., Chen, L., Vilimas, T., Subramanian, J., Rubinstein, L., Kummar, S., Chen, A. P., … Parchment, R. E. (2020)., Clinical Evolution of Epithelial-Mesenchymal Transition in Human Carcinomas., Cancer research, 80(2), 304–318. https://doi.org/10.1158/0008-5472.CAN-18-3539
- Zhao, X., et al. (2023)., Ebselen as a therapeutic antioxidant: advances and challenges., Redox Biology, 58, 102568. https://doi.org/10.1016/j.redox.2023.102568
- Zhu, X., Kusaka, Y., Sato, K., & Zhang, Q. (2000)., The endocrine disruptive effects of mercury., Environmental health and preventive medicine, 4(4), 174–183. https://doi.org/10.1007/BF02931255
- Tsuboi, T., et al. (2023)., Ebselen mitigates nephrotoxicity in drug-induced acute kidney injury via GPx-mimetic activity., Pharmaceuticals, 16(5), 687. https://doi.org/10.3390/ph16050687
- Branco, V., Caito, S., Farina, M., Teixeira da Rocha, J. B., Aschner, M. (2017)., Biomarkers of mercury toxicity: Past, present, and future trends., Journal of Toxicology and Environmental Health, Part B, 20(3), 119–154.
- Halliwell, B. (2011)., Free radicals and antioxidants – quo vadis?, Trends in Pharmacological Sciences, 32(3), 125 130.
