International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Development of a model for ground measured and satellite-derived GSR data

Author Affiliations

  • 1Science Department, El-Amin International School, Minna, Niger State, Nigeria
  • 2Physics Department, Federal University of Technology, Minna, Niger State, Nigeria
  • 3Vice-Chancellor, Summit University, Offa, Kwara State, Nigeria
  • 4Physics Department, Federal University of Technology, Minna, Niger State, Nigeria

Int. Res. J. Environment Sci., Volume 11, Issue (3), Pages 27-34, July,22 (2022)


The precise knowledge about the solar radiation falling on a surface per unit time is prerequisite for effective design and application of solar technology. Acquiring Global Solar Radiation (GSR) data is not always easy owing to many militating factors such as insufficient funding, lack of skilled personnel and poor maintenance culture. Ground-measured GSR is one of the possible ways of obtaining GSR data, but satellite-measured GSR data is the most available source for any location of interest. The research therefore is aimed at establishing a mathematical model that will predict the ground measured GSR from the available satellite measured GSR using regression analysis. From results, the two data sources showed good agreement with a regression plot of 80%. The performance of the model was tested using statistical metrics. MAE of 0.4004, MBE of 0.0217 and a MSE of 0.2522 were recorded. Hence, the developed model can be adopted for regions that have similar climatic condition as the study area to predict the desired solar insolation from the available solar insolation.


  1. Hermann, S. (2001)., A Solar Manifesto. London: James and James.,
  2. Lawal Nadabo, S. (2010)., Renewable Energy as a Solution to Nigerian Energy Crisis.,
  3. Saheb-Koussa, D., Haddadi M. & Belhamel, M. (2009)., Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria., Appl Energy, 86(7), 1024-1030.
  4. Kumar, U. S. & Manoharan P. (2014)., Economic analysis of hybrid power systems (PV/ diesel) in different climatic zones of Tamil Nadu., Energy Convers Manag, 80, 469-476.
  5. Energypedia (2020)., Nigeria Energy Situation.,
  6. Arcanjo, M. (2018)., Revolutionizing Renewable in Sub-Saharan Africa., Climate Institute Publication. 1201 New York Avenue, NW, Suite 400 Washington DC 20005
  7. Olatomiwa, L., Mekhilef, S., Huda, A. S. & Ohunakin, O. (2015)., Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria., Elsevier Renewable Energy, 83(2015), 435-446.
  8. Utuk, M. (2017)., Current Power Generation in Nigeria.,
  9. Gerretsen, I. (2018)., Oil-rich Nigeria Turns to Renewable Energy as Population Booms., Accessed May 6, 2018.
  10. Africa, P. (2018)., US AID., Power Africa.
  11. The Africa Report (2019)., Nigeria’s Loss is Ghana’s Gain.,
  12. Punch (2020)., Of Nigeria’s Dying Factories and Exodus to Ghana.,
  13. Zhang, D., Wang, J., Linb, Y., Si, Y., Huang, C., Yang, J., Huang, B. & Li, W. (2017)., Present Situation and Future Prospect of Renewable Energy in China., Renewable and Sustainable Energy Reviews Elsevier, 76(2017), 865–871.
  14. Coleman, J. A. & Davidson, G. (2015)., The Dictionary of Mythology: An A-Z of Themes, Legends, and Heroes. London, England: Arcturus Publishing Limited., 316. ISBN 978-1-78404-478-7.
  15. Abedelhak, B. J., Souad, R., Najib E., Abdelaziz H., Faicel H., & Farouk Y. (2013)., Estimation of GSR using three simple methods., Energy Procedia Elsevier Ltd, 42(2013), 406-415.
  16. GCEP (Global Climate & Energy Project) (2006)., An Assessment of Solar Energy Conversion Technologies and Research Opportunities., Stanford University.
  17. IEA (2004)., World Energy Outlook., International Energy Agency, Paris, IEA/OECD.
  18. Rapier, R. (2020)., Fossil Fuels Still Supply 84 Percent of World Energy - and other Eye Openers from BP’s Annual Review.,
  19. Denchak, M. (2018)., Fossil Fuels: The Dirty Facts.,
  20. Huanga, G., Li, Z., Li X., Liang, S., Yang, K., Wang, D. & Zhang, Y. (2019)., Estimating surface solar irradiance from satellites: Past, present, and future perspectives., Elsevier Remote Sensing of Environment, 233(2019), 111371.
  21. Janjai, S., Pankaew, P. & Laksana J. (2009)., A model for calculating hourly global solar radiation from satellite data in the tropics., Appl. Energy, 86, 1450–1457.
  22. Chendo, M. A. C. (2002)., Factors Militating Against the growth of the Solar PV Industry in Nigeria and Their Removal., Nigerian Journal of Renewable Energy, 10 (1&2), 151-158.
  23. Ullah, K. R., Saidur, R., Ping, H.W., Akikur, R. K. & Shuvo, N. H. (2013)., A review of solar thermal refrigeration and cooling methods., Renewable Sustainable Energy Rev., 24, 499–513.
  24. Khorasanizadeh, H. & Mohammadi, (2016)., Diffuse solar radiation on a horizontal surface., Reviewing and categorizing the empirical models.
  25. Frolich C. & Julius L. (1986)., World Climate Research Programme: Revised Instruction Manual on Radiation Instruments and Measurements., WCRP Publications Series, 7, WMO/TD-No.149, October 1986.
  26. American Society for Testing and Materials (2006).., Committee E21 on Space Simulation and Applications of Space Technology., Standard solar constant and zero air mass solar spectral irradiance tables. ASTM International.
  27. Qiang Fu, (2003)., Radiation (Solar)., University of Washington, Seattle, WA, USA Copyright 2003 Elsevier Science Ltd. All Rights Reserved. pp 1859-1863.
  28. Gueymard C. A. (2004)., The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models., Solar Energy, 76, 423-453.
  29. Lysko M. D. (2006)., Measurement and Models of Solar Irradiance., Doctoral thesis for the degree of doctor scientiarum Trondheim, August 2006. Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Physics. ISBN 82-471-8069-3 (electronic version)
  30. Liang, S. L., Wang, D. D., He, T. & Yu, Y. Y., (2019)., Remote Sensing of Earth, Int. Journal of Digital Earth, 12, 737–780.
  31. Federer, C. A. & Tanner, C. B. (1965)., A Simple Integrating Pyranometer for Measuring Daily Solar Radiation., Journal of Geophys. Res., 70, 2301-2306.
  32. Gates, D. M. (1965)., Radiant Energy, its Receipt and Disposal. Meteor., Monogr, 6,28, 1-26.
  33. Pandey, C. K. & Katiyar, A. K. (2013)., Solar Radiation: Models and Measurement Techniques., Hindawi Publishing Corporation. Journal of Energy. Volume 2013, Article ID 305207, 8 pages.
  34. Osinowo, A. A., Okogbue, E. C., Ogungbenro, S. B. & Fashanu, O. (2015)., Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications., Hindawi Publishing Corporation Journal of Solar Energy Volume 2015, Article ID 819307, 9 pages.
  35. Chineke, T. C., Aina, J. I. & Jagtap, S. S. (2017)., Solar Radiation Data Base for Nigeria., Research gate., DOI: 10.4314/dai.v11i3.15556.
  36. Huanga, G., Li, Z., Li X., Liang, S., Yang, K., Wang, D. & Zhang, Y. (2019)., Estimating surface solar irradiance from satellites: Past, present, and future perspectives., Elsevier Remote Sensing of Environment, 233 (2019) 111371.
  37. Beyer, H. G., Costanzo, C., & Heinemann, D. (1996)., Modifications of the Heliosat procedure for irradiance estimates from satellite images., Solar Energy, 56(3), 207-212.
  38. Ineichen, P. (2011)., Five satellite products deriving beam and global irradiance validation on data from 23 ground stations (IEA)., Research report of the Institute for Environmental Sciences, University of Geneva, 2011.
  39. Copper, J. K. & Bruce, A. G. (2015)., Assessment of the Australian Bureau of Meteorology hourly gridded solar data., Asia-Pacific Solar Research Conference (APVI) (2015).
  40. Almorox, J. (2011)., Estimating global solar radiation from common meteorological data in Aranjuez, Spain., Universidad Polit´ecnica de Madrid, School of Agricultural Engineers, Department of Soil Science and Climatology, Ciudad Universitaria s/n, 28040 Madrid-SPAIN. Turk J Phys 35(2011), 53 – 64.
  41. Al-Aboosi, F. Y. (2020)., Models and Hierarchical Methodologies for Evaluating Solar Energy Availability Under Different Sky Conditions Toward Enhancing Concentrating Solar Collectors Use: Texas as a case study., International Journal of Energy and Environmental Engineering, 11, 177–205.
  42. Kimothi, S., Bhattacharya, B. K., Semalty, P. D., Pandey, V. K. & Dadhwal, V. K. (2004)., Estimation of ground insolation using METEOSAT data over India., Current Science, 86(9), 1308–1312.
  43. Otkin, J. A., Anderson, M. C., Mecikalski, J. R. & Diak, G. R. (2005)., Validation of GOES-Based Insolation Estimates Using Data from the U.S. Climate Reference Network., Journal of Hydrometeorology, 6(4), 460–475.
  44. Deneke, H., Feijt, A., Van Lammeren, A. & Simmer, C. (2005)., Validation of a Physical Retrieval Scheme of Solar Surface Irradiances from Narrowband Satellite Radiances., Journal of Applied Meteorology, 44(9), 1453–1466.
  45. Suckling, P. W. (1983)., Extrapolation of solar radiation measurements: mesoscale analyses from Arizona and Tennessee Valley Authority regions., Journal of Climate & Applied Meteorology, 22(3), 488–494.
  46. Aguado, E. (1986)., Local-scale variability of daily solar radiation— San Diego County, California., Journal of Climate & Applied Meteorology, 25(5), 672–678.
  47. Younes, S. & Muneer, T. (2006)., Improvements in solar radiation models based on cloud data., Building Services Engineering Research and Technology, 27(1), 41–54.
  48. Akinsanola, A. A., & Ogunjobi, K. O. (2017)., Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria., Theoretical and Applied Climatology, 128(1), 275-289.
  49. Nwokolo, S. C. & Ogbulezie, J. C. (2018)., A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University., Journal of Basic and Applied Sciences, Elsevier, 7(2018), 367–396.
  50. Cano, D., Monget, J. M., Albuisson, M., Guillard, H., Regas, N. & Wald, L. (2010)., A Method for The Determination of the Global Solar Radiation from Meteorological Satellite Data., Solar Energy, Elsevier, 37(1), 31-39.
  51. Olomiyesan B. M. & Oyedum O. D. (2016)., Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria., Journal of Solar Energy. Hindawi Publishing Corporation, Article ID 8197389, 1-7.
  52. Aderinto, S. A. (2015)., Implementation of Automatic Weather Observing Stationsin Nigerian Meteorological Agency., Directorate of Engineering and Technical Services. Nigerian Meteorological Agency, Abuja, Nigeria.
  53. Vernay, C., Pitaval, S., & Blanc, P. (2014)., Review of satellite-based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems., Energy Procedia, 57, 1383-1391.
  54. Vernay C., Blanc P. & Pitaval S. (2013)., Characterizing Measurements Campaigns for an Innovative Calibration Approach of the Global Horizontal Irradiation Estimated by HelioClim-3., Renewable Energy, 57, 339-347.
  55. Ernst, M., Thomson, A., Haedrich, I., & Blakers, A. (2016)., Comparison of ground-based and satellite-based irradiance data for photovoltaic yield estimation., Energy Procedia, 92, 546-553.
  56. Freedman, D. A. (2009)., Statistical models: theory and practice., Cambridge university press.
  57. LI-COR (1991)., LI-COR Terrestrial Radiation Sensors, Type SA Instruction Manual., Publication No. 8609-56 November, 1986Revised July, 1991. © Copyright 1986, LI-COR, Lincoln, Nebraska USA.