International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Above-ground bole carbon stock estimation using forest inventory of the secondary forest ecosystem in Ibadan, Nigeria

Author Affiliations

  • 1Federal College of Forestry, Ibadan, Nigeria
  • 2University of Liberia, Liberia

Res. J. Agriculture & Forestry Sci., Volume 8, Issue (1), Pages 10-21, January,8 (2020)

Abstract

Secondary forest ecosystem contributes by sequestration of carbon to global climate change mitigation. Above-Ground Bole Biomass (AGBB) is the major component used to monitor and estimate Carbon Stocks (CS) and tropical forest fluxes. However, information for the International Institute of Tropical Agriculture (IITA) on Above-Ground Bole Carbon Stock (AGBCS), which hosts relics of the undisturbed forest ecosystem in south-western Nigeria, has not been documented. Hence, AGBCS of the forest ecosystem was estimated using the technique of forest inventory. Using systematic sampling technique at 10% sampling intensity, one hundred and forty plots of 50m x 50m were laid in IITA secondary forest ecosystem. Trees were enumerated in each plot and identified by species level. In order to determine Tree Volume (TV), Total Height (TH) and Diameter at Breast Height (DBH) of trees &

References

  1. Food and Agriculture Organization of the United Nations (2011)., State of World′s Forest., Food FAO: Rome, Italy.
  2. Gullison R.E., Frumhoff P.C., Canadell J.G., Field C.B., Nepstad D.C., Hayhoe K. and Nobre C. (2007)., Tropical forests and climate policy., Science, 316(5827), 985-986.
  3. Brown S. (1997)., Estimating Biomass and Biomass Change of Tropical Forests., FAO Forest Resources Assessment Publication: Roma, Italy, 55.
  4. Neigh C., Bolton D., Diabate M., Williams J. and Carvalhais N. (2014)., An automated approach to map the history of forest disturbance from insect mortality and harvest with Landsat time-series data., Remote Sensing, 6(4), 2782-2808.
  5. Achard F., Eva H.D., Mayaux P., Stibig H. and Belward A. (2004)., Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s., Global Biogeochemical Cycles, 18, GB2008, Doi: 10.1029/2003GB002142.
  6. Mokany K., Raison R.J. and Prokushkin A.S. (2006)., Critical analysis of root: shoot ratios in terrestrial biomes., Global Change Biology, 12(1), 84-96.
  7. Houghton R.A., Hall F. and Goetz S. (2009)., Importance of biomass in the global carbon cycle., J. Geophys. Res., 114, 1-13.
  8. Gibbs H.K., Brown S., Niles J.O. and Foley J.A. (2007)., Monitoring and estimating tropical forest carbon stocks: making REDD a reality., Environ. Res. Lett., 2(4), 054023
  9. Lu D., Batistella M. and Moran E. (2005)., Satellite estimation of aboveground biomass and impacts of forest stand structure., Photogrammetric Engineering & Remote Sensing, 71(8), 967-974. doi:10.14358/PERS.71.8.967
  10. Aghimien E.V., Osho J.S.A., Hauser S. and Ade-Oni V.D. (2015)., Forest volume to above-ground tree biomass models for the secondary forest in IITA, Ibadan, Nigeria., International Journal of Forest Research, 4(3), 1000152.
  11. Fayolle A., Doucet J.L., Gillet J.F., Bourland N. and Lejeune P. (2013)., Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks., Forest Ecology and Management, 305, 29-37.
  12. Goodman R.C., Phillips O.L., Torres D.D., Freitas L., Cortese S.T., Monteagudo A. and Baker T.R. (2013)., Amazon palm bimass and allometry., Forest Ecology and Management, 310, 994-1004.
  13. Lu D., Chen Q., Wang G., Moran E., Batistella M., Zhang M. and Saah D. (2012)., Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates., International Journal of Forestry Research 2012: 16. doi:10.1155/2012/436537.
  14. Chave J., Andalo C., Brown S., Cairns M.A., Chambers J.Q., Eamus D., Fölster H., Fromard F., Higuchi N. and Kira T. (2005)., Tree allometry and improved estimation of carbon stocks and balance in tropical forests., Oecologia, 145, 87-99.
  15. Zanne A.E., Lopez-Gonzalez G., Coomes D.A., Ilic J., Jansen S.S., Lewis S.L., Miller R.B., Swenson N.G., Wiemann M.C. and Chave J. (2009)., Towards a worldwide wood economics spectrum. Dryad Digital Repository., Dryad Digital Repository: Global wood density database. Available at http://dx.doi.org/10. 5061/dryad.234 Accessed 3/7/2015
  16. Mitchard E.T.A., Feldpausch T.R., Brienen R.J.W., Lopez Gonzalez G., Monteagudo A., Baker T.R., Lewis S.L., Lloyd J., Quesada C.A., Gloor E., ter Steege H., Meir P., Alvarez E., Araujo-Murakami A., AragÃo L.E.O.C., Arroyo L., Aymard G., Banki O., Bonal D., Brown S., Brown F.I., Cerón C.E., Chama Moscoso V., Chave J., Comiskey J.A., Cornejo F., Corrales Medina M., Da Costa L., Costa F.R.C., Di Fiore A., Domingues T.F., Erwin L., Frederickson T., Higuchi N., Honorio Coronado E.N., Killeen T.J., Laurance W.F., Levis C., Magnusson W.E., Marimon B.S., Marimon Junior B.H., Mendoza Polo I., Mishra P., Nascimento M.T., Neill D., Núñez Vargas M.P., Palacios W.A., Parada A., Pardo Molina G., Peña-Claros M., Pitman N., Peres C.A., Poorter L., Prieto A., Ramirez-Angulo H., Restrepo Correa Z., Roopsind A., Roucoux K.H., Rudas A., SalomÃo R.P., Schietti J., Silveira M., de Souza P.F., Steininger M.K., Stropp J., Terborgh J., Thomas R., Toledo M., Torres-Lezama A., van Andel T.R., van der Heijden G.M.F., Vieira I.C.G., Vieira S., Vilanova-Torre E., Vos V.A., Wang O., Zartman C.E., Malhi Y. and Phillips O.L. (2014)., Markedly divergent estimates of amazon forest carbon density from ground plots and satellites., Global Ecology and Biogeography, 23, 935-946.
  17. F.A.O. (1997)., Estimating Biomass and Biomass Change of Tropical Forests: a Primer., FAO Forestry Paper 134.Retrived March, 2, 2013, fromhttp://www.fao.org/ docrep/W4095E/w4095e00.htm.
  18. Wang G., Zhang M., Gertner G.Z., Oyana T., McRoberts R. E. and Ge H. (2011)., Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data., Scandinavian Journal of Forest Research, 26(4), 360-373.
  19. Reyes G., Brown S., Chapman J. and Lugo A.E. (1992)., Wood densities of tropical tree species., General Technical Report SO-88, United States Department of Agriculture, Forest Service, Southern Forest Experiment Station.
  20. Change I.P.O.C. (2006)., IPCC Guidelines for National Greenhouse Gas Inventories., Prepared by the National Greenhouse Gas Inventories Programme. Tokyo: Inst. Glob. Environ. Strateg.
  21. Soto-Pinto L., Anzueto M., Mendoza J., Ferrer G.J. and de Jong B. (2010)., Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico., Agroforestry Systems, 78, 39-51.
  22. Beets P.N., Brandon A.M., Goulding C.J., Kimberley M. O., Paul T.S.H. and Searles N. (2011)., The inventory of carbon stock in New Zealand′s post-1989 planted forest for reporting under the Kyoto protocol., Forest Ecology and Management, 262(6), 1119-1130.
  23. Jones D.A. and O′Hara K.L. (2012)., Carbon density in managed coast redwood stands: implications for forest carbon estimation., Forestry, 85, 99-110.
  24. Martin A.R. and Thomas S.C. (2011)., A Reassessment of Carbon Content in Tropical Trees., PLoS one, 6, 23533.
  25. Djomo A.N., Knohl A. and Gravenhorst G. (2011)., Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest., Forest Ecology and Management, 261(8), 1448-1459.
  26. Arias D., Calvo-Alvarado J., Richter D.D.B. and Dohrenbusch A. (2011)., Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica., Biomass and bioenergy, 35(5), 1779-1788.