International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Applications of drone technology in the agricultural industry worldwide and in Africa: bibliographic review

Author Affiliations

  • 1Laboratoire des Procédés et Innovations Technologiques de Lokossa, INSTI/UNSTIM, Bénin
  • 2Laboratoire des Procédés et Innovations Technologiques de Lokossa, INSTI/UNSTIM, Bénin
  • 3Laboratoire des Procédés et Innovations Technologiques de Lokossa, INSTI/UNSTIM, Bénin

Res. J. Agriculture & Forestry Sci., Volume 13, Issue (4), Pages 17-29, October,8 (2025)

Abstract

With technological and technical developments, research on drones is intensifying more, and practical applications in many fields of human activity, especially in agriculture, have become more extensive. Currently, drone technology has matured, and drones are creating a new industrial revolution. It is estimated that the financial gains from the use of drones or UAVs (Unmanned Aerial Vehicles) in the agricultural sector will reach billions of dollars in the coming years. But the African continent is struggling to integrate into this process to take its share of this economic windfall that is developing. As farmers in the Global South struggle to adapt to climate change and other challenges, drones are expected to help all agricultural businesses and improve their efficiency and productivity. The objective of this work is to present the technology of drones on architectural, structural and conceptual level applied to sustainable and efficient agriculture and to emphasize the advantages of their uses in Africa and Benin. Also, operating principles coupled with a functional study of the technology of these unmanned vehicles are developed. Different applications of UAVs in the agricultural industry and their limitations are exposed. This work is part of a view to designing, sizing and producing drones for agricultural use within the limits of aviation safety and security regulations in Benin.

References

  1. Javad, S., Elaheh, T., Pedram R. and Mostafa H, (2020)., A Comprehensive Review of Applications of Drone Technology in the Mining Industry., Drones; 4, 34; doi :10.3390/drones4030034. www.mdpi.com/journal/drones.
  2. Kazuki S., Salif D. and Ibnou D. (2015)., On-farm testing of a nutrient management decision-support tool for rice in the Senegal River valley., Computers and Electronics in Agriculture, 116(5), 36-44.
  3. Pasquale, D., De Vito, L., Glielmo, L., Picariello, F. and Giuseppe S. (2018)., A review on the use of drones for precision agriculture., IOP Conference Series Earth and Environmental Science, 275(1), 012022, https://iopscience.iop.org/article, doi:10.1088/1755-1315/275/1/012022.
  4. Ahirwar, S., Swarnkar, R., Bhukya, S. and Namwade, G. (2019)., Application of Drone in Agriculture., International Journal of Current Microbiology and Applied Sciences, 8(01), 2500-2505.
  5. Labreuche, J., François, L. and Jean Roger, E. (2014)., Faut-il travailler le sol? Acquis et innovations pour une agriculture durable., Référence e-Book [e-Pub] : 02463EPB, Éditions Quae, pp. 1-192.ISBN :978-2-7592-2193-6
  6. Dimosthenis, C. T., Stamatia, B. and Panagiotis, G. S. (2019)., A Review on UAV-Based Applications for Precision Agriculture., 10(11), 349 https://doi.org/10. 3390/info10110349.
  7. Bartosz, B., Daponte, P., De Vito, L. and Lamonaca, F. (2018)., A remote-controlled platform for UAS testing., IEEE Aerospace and Electronic Systems Magazine, 33(8). 48-56, doi :10.1109/MAES.2018.170176.
  8. Daponte, P., Luca, D. V., Glielmo, L., Luigi Iannelli, Davide L., Francesco P. and Silano, G. (2019)., A review on the use of drones for precision agriculture., PIOP Conf. Ser.: Earth Environ. Sci. 275 012022 doi:10.1088/1755-1315/275/1/012022.
  9. Boris, B., Damien, P., Chinnapat, T. and Jean-Marc M. (2007)., Fixed-Wing Micro Air Vehicles with Hovering Capabilities”., Platform Innovations and system integration for Unmanned Air, Land and Sea Vehicles. AVT-SCI Joint Symposium Meeting Proceedings RTO-MP-AVT-146 Paper 38, 1 – 16.
  10. Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P and Zarzycki H. (2016)., Drones and Possibilities of their Using., J Civil Environ Eng, 6, 233. doi:10.4172/2165-784X.1000233.
  11. Amoussou, K. (2018)., Commande d’un système sous actionné par apprentissage machine: cas d’un quadrirotor UAC-EPAC Abomey Calavi.,
  12. Luthffi, I. I., Thibault, V., Dambre, J. and Francis W. (2019)., Leveraging Robotics Research for Children with Autism: A Review., International Journal of Social Robotics, 11(7). DOI:10.1007/s12369-018-0508-1.
  13. Bacco, M., Ferro, E and Gotta, A. (2014)., UAVs in WSNs for agricultural applications: An analysis of the two-ray radio propagation model., IEEE SENSORS, 130 – 133. DOI: 10.1109/ICSENS.2014.6984950.
  14. Christian Dupaty (2018)., Mini drones Quadra et Hexa Comment fonctionnent-t-ils?., Bordeaux.
  15. Mondal, Sabyasachi & Williamson, Alex & Xu, Zhengjia & Tsourdos, Antonios (2019)., Autonomous Architecture for UAV-based Agricultural Survey., 10.2514/6.2020-2298.https://doi.org/10.2514/6.2020-2298.
  16. Singhal, G., Bansod, B. and Mathew, L. (2018),, Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review., Preprints 2018110601 doi: 10.20944/preprints201811. 0601.v1.
  17. Kimon, P. V., George, J. V. (2015)., Handbook of Unmanned Aerial Vehicles., Springer Netherlands; ISBN : 978-90-481-9706-4 978-90-481-9707-1.
  18. Quan, Q. (2017)., Introduction to Multicopter Design and Control., Springer.
  19. Bhandari, S., Raheja, A., Chaichi, M. R., Green, R. L., Do, D. Pham, F.H.; Ansari, M., Wolf, J.G.; Sherman, T.M. and Espinas, A. (2018)., Effectiveness of UAV-Based Remote Sensing Techniques in Determining Lettuce Nitrogen and Water Stresses., In Proceedings of the 14th International Conference in Precision Agriculture, Montreal, QC, Canada.
  20. European Commission (2019)., Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems., Off. J. Eur. Union, L 152, 1–40.
  21. Agnieszka, A. T., Honorata, P., Klaudia, D. and Arkadiusz,˙Z. (2024)., Risks of Drone Use in Light of Literature Studies., 24(4).
  22. Labreuche, J., Laurent, F. and Roger J. (2014), Faut-il travailler le sol ? Acquis et innovations pour une agriculture durable., Éditions Quae, Arvalis - Institut du vegetal.
  23. Sudha M., and et al. (2024)., Drones in agriculture: Revolutionizing Crop Monitoring and Spraying-Frontiers in Health Informatics., 13(03), 907-914.
  24. George I., Gheorghe V. and Ion D. (2015)., Research on the use of drones in precision agriculture., U.P.B. Sci. Bull., Series D, 77(4).
  25. Justin, C., Galloway, E., Shalyn, D., Shawn, B. and Ross I. M. (2025)., Using thermal camera drones in beef cattle round up-Utah State University.,
  26. Qiang, R and Rongde, Z. (2019)., Application and Development of New Drones in Agriculture., ESMA.doi:10.1088/1755-1315/440/5/052041.
  27. Saito, K., Diack, S., Dieng, I., and N’Diaye, M. K. (2015)., On-Farm Testing of Nutrient Management. Decision Support Tool for Rice in the Senegal River Valley., Comput. Electron. Agric., 116, 36–44. doi.org/10.1016/j.compag.2015.06.008.
  28. Mumbone, M., Bennett, R.M., Gerke, M. and Volkmann, W. (2015)., Innovations in boundary mapping: Namibia, customary lands and UAVs., In Proceedings of the Land and Poverty Conference 2015: Linking Land Tenure and Use for Shared Prosperity, Washington, DC, USA, 23–27.