International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Study on the synthesis techniques of optical brighteners: A Review

Author Affiliations

  • 1Chemistry Department, Manoj Pandey Block, National Defence Academy, Pune, Maharashtra-411023, India

Res. J. Recent Sci., Volume 14, Issue (3), Pages 28-43, July,2 (2025)

Abstract

The efficiency of optical brightening agents (OBAs) also referred to as fluorescent whitening agents (FWAs), has been a subject of sustained interest. These are synthetic compounds widely used to enhance the appearance of colour in textiles, paper, detergents, and plastics by absorbing ultraviolet (UV) light and re-emitting it as visible blue light. This review provides a comprehensive overview with a focus on recent advances in their synthesis published up to the year 2023.This paper explores the synthesis of various types of optical brightening agents (OBAs), primarily derived from azoles, triazines, stilbenes, and naphthalimides, including their hybrid forms. The development of these compounds began in 1975, with significant contributions to their synthesis made by Dr. D.W. Rangnekar.

References

  1. Saeed, A., Shabir, G., & Batool, I. (2014)., Novel stilbene-triazine symmetrical optical brighteners: Synthesis and applications., Journal of fluorescence, 24(4), 1119-1127.
  2. Dorlars, A., Schellhammer, C. W., & Schroeder, J. (1975)., Heterocycles as structural units in new optical brighteners., Angewandte Chemie International Edition in English, 14(10), 665-679.
  3. Okuom, M., Wilson, M., Groathouse, J., Lee, J., Symonsbergen, D., Gustafson, C., Trauernicht, M., Barcena, H., Reicks, C., Sikich, S., Burks, R., & Holmes, A. (2013)., Synthesis of a Fluorophore with Improved Optical Brightness., International Journal of Organic Chemistry, 3(4), 256–261.
  4. Lalevée, J., Goddard, J.-P., Blanchard, N., Morlet-Savary, F., Nouen, D., Zuo, X., & Schmitt, M. (2018)., Novel applications of fluorescent brighteners in aqueous visible-light photopolymerization: High performance water-based coating and LED-assisted hydrogel synthesis., Polymer Chemistry, 9. https://doi.org/10.1039/C8PY00584B
  5. Huo, J., Hu, Z., Chen, D., Luo, S., Wang, Z., Gao, Y., Zhang, M., & Chen, H. (2017)., Preparation and Characterization of Poly-1,2,3-triazole with Chiral 2(5 H )-Furanone Moiety as Potential Optical Brightening Agents., ACS Omega, 2(9), 5557–5564. https://doi.org/10.1021/acsomega.7b00196
  6. Connell, D., Jour, P., Gutke, K., & Reid, D. (2014)., The contribution of pulp brightness and optical brightening agents to paper whiteness., Tappi Journal, 13(3), 43-52.
  7. Hamer, E. C., Moore, C. B., & Denning, D. W. (2006)., Comparison of two fluorescent whiteners, Calcofluor and Blankophor, for the detection of fungal elements in clinical specimens in the diagnostic laboratory., Clinical Microbiology and Infection, 12(2), 181–184. https://doi.org/10.1111/j.1469-0691.2005.01321.x
  8. Jellema, R., Elema, E. T., & Malingré, Th. M. (1981)., Fluorodensitometric determination of potato glycoalkaloids on thin-layer chromatograms., Journal of Chromatography A, 210(1), 121–129. https://doi.org/ 10.1016/S0021-9673(00)91187-7
  9. Vennewald, I., & Klemm, Eckart. (2010)., Otomycosis: Diagnosis and treatment., Clinics in Dermatology, 28(2), 202–211. https://doi.org/10.1016/j.clindermatol.2009.12.0 03
  10. Vennewald, I., & Wollina, U. (2005)., Cutaneous infections due to opportunistic molds: Uncommon presentations., Clinics in Dermatology, 23(6), 565–571. https://doi.org/10.1016/j.clindermatol.2005.01.003
  11. Bykova, I. N., & Pakshver, A. B. (1978)., Stability of optical brighteners in the synthesis of polycaproamide and polyethylene terephthalate., Fibre Chemistry, 9(3), 260–263. https://doi.org/10.1007/BF00547804
  12. Sendón García, R., Sanches Silva, A. T., & Paseiro Losada, P. (2004)., Determination of diphenylbutadiene by liquid chromatography–UV–fluorescence in foodstuffs., Journal of Chromatography A, 1056(1), 99–103. https://doi.org/10.1016/j.chroma.2004.06.124
  13. Grabchev, I., & Moneva, I. (1999)., Synthesis and properties of vinylic copolymers with fluorescent moieties as optical brighteners for liquid crystals., Journal of Applied Polymer Science, 74(1), 151–157. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1 <151::AID-APP19>3.0.CO;2-A
  14. Guo, M., Zhang, G., Pei, J., Dun, L., & Zhang, W. (2020)., Preparation of performance of nanosilica-loaded fluorescent yellowing inhibitor in paper made from high-yield pulp., Bioresources, 15(4), 8784.
  15. Gold, H. (1975)., The chemistry of fluorescent whitening agents. Major structural types., Environmental Quality and Safety Supplement, 4, 25–36.
  16. Patil, A. R., Tilakraj, T. S., Shastri, S. L., Shanbhag, A. A., Shastri, L. A., Bhat, V. S., & Inamdar, S. R. (2023)., Synthesis and characterization of coumarin based 1, 3, 4-oxadiazole: Exploring optoelectronic applications, thermal properties and theoretical study., Journal of Molecular Structure, 1290, 135887. https://doi.org/10.1016/ j.molstruc.2023.135887
  17. Koskinen, M., & Wilén, C.-E. (2009)., Preparation of core-shell latexes for paper coatings., Journal of Applied Polymer Science, 112(3), 1265–1270. https://doi.org/10. 1002/app.29578
  18. Mazumder, K., Komber, H., Bittrich, E., Voit, B., & Banerjee, S. (2023)., Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications., Journal of Polymer Science, 61(16), 1778–1791. https://doi.org/10.1002/pol.20220764
  19. El-Sedik, M., Aysha, T., & Youssef, Y. (2017)., Synthesis, photophysical properties, and application of optical brighteners based on stilbene-oxadiazole derivatives., Coloration Technology, 133(2), 122–127. https://doi.org/10.1111/cote.12258
  20. Wu, S., Zhou, D., Geng, F., Dong, J., Su, L., Zhou, Y., & Yin, S. F. (2021)., Metal‐Free Oxidative Condensation of Catechols, Aldehydes and NH4OAc towards Benzoxazoles., Advanced Synthesis & Catalysis, 363(14), 3607-3614.
  21. Rangnekar, D. W., & Rajadhyaksha, D. D. (1986)., Synthesis of oxazolo[4’,5’:5,6]pyrido[1,2-a]-benzimidazole derivatives and study of their fluorescent properties., Dyes and Pigments, 7(5), 365–372. https://doi.org/10.1016/0143-7208(86)80004-3
  22. Belgodere, E., Bossio, R., Chimichi, S., Parrini, V., & Pepino, R. (1983)., Synthesis and fluorescence of some thiazole and benzothiazole derivatives., Dyes and Pigments, 4(1), 59–71. https://doi.org/10.1016/0143-7208(83)80007-2
  23. Dhamnaskar, S. V., & Rangnekar, D. W. (1988)., Synthesis of triazoflo[4,5-b]pyrido[1’,2’-a]benzimidazole derivatives as fluorescent disperse dyes and whiteners for polyester fibre., Dyes and Pigments, 9(6), 467–473. https://doi.org/10.1016/0143-7208(88)82006-0
  24. Rangnekar, D. W., & Tagdiwala, P. V. (1986)., Synthesis of 2,4-dihydro-6-methyl-4-phenyl-2-(4-substituted phenyl) pyrazolo[3,4-d]-1,2,3-triazole derivatives and their use as fluorescent whitener., Dyes and Pigments, 7(4), 289–298. https://doi.org/10.1016/0143-7208(86)85014-8
  25. Rangnekar, D. (1985)., Synthesis of 2-hetaryl-5-phenyl-1,3,4-oxadiazole and bis-1,3,4-oxadiazole derivatives and their use as fluorescent whiteners for polyester fibres., Dyes and Pigments, 6(4), 293–302. https://doi.org/10.1016/0143-7208(85)87005-4
  26. Miladinova, P. (2015)., Synthesis of some symmetrically substituted stilbene-triazine derivatives containing tetramethylenepiperidine fragments and their application to make self-whitening polyacrylonitrile., Coloration Technology, 131(4), 272–278. https://doi.org/10.1111/ cote.12152
  27. Wilkowska, E., & Konopski, L. (2008)., Quantitative Structure-Properties Relationship in Stilbene-Triazine Optical Brightener Design., QSAR & Combinatorial Science, 27(3), 357–364. https://doi.org/10.1002/qsar. 200730027
  28. Farouk, R., Aysha, T. S., El-Sedik, M. S., Abd El Megiede, S. A., & Mousa, A. A. (2022)., Synthesis of biscoumarin bifunctional reactive fluorescent whitening agents and their application on nylon-6 fabric., Indian Journal of Fibre & Textile Research (IJFTR), 46(4), Article 4. https://doi.org/10.56042/ijftr.v46i4.43262
  29. Ali, E. B., Kazemi, M., & Ghasemzadeh, M. A. (2020)., A Novel Preparation of Blankophor R Nanoparticles by Reverse Microemulsion Method., Polycyclic Aromatic Compounds.
  30. Wan, M., Hua, L., Zeng, Y., Xie, D., Jiao, P., & Tong, Z. (2019)., Synthesis of novel 4,4’-bis(2,4-pyrimidinyl)-diaminostilbene-2,2’-disulfonic acid derivatives and their whitening effect on cotton fiber as fluorescent whitening agents., Textile Research Journal, 89(8), 1448–1454. https://doi.org/10.1177/0040517518773372
  31. Wan, M., Zhou, S., Jiao, P., Cao, C., & Guo, J. (2013)., Synthesis, Physical Properties and Cytotoxicity of Stilbene-Triazine Derivatives Containing Amino Acid Groups as Fluorescent Whitening Agents., Journal of Fluorescence, 23(5), 1099–1105. https://doi.org/10.1007/ s10895-013-1239-1
  32. Hussain, M., Khan, K., Parveen, R., & Shim, W. (2009)., Synthesis and Properties of Symmetrically Substituted 4,4 ’-Bis(1,3,5-triazinyl)-Diamino Stilbene-2,2 ’-Disulfonic Acid Derivatives as UV Absorbing and Fluorescent Whitening Agents., Fibers and Polymers, 10, 407–412. https://doi.org/10.1007/s12221-009-0407-z
  33. Türker, L., & Gülec, A. (1990)., Syntheses of some novel optical brightener kernels via 1,3-dipolar cycloaddition reactions., Dyes and Pigments, 14(4), 307–322. https://doi.org/10.1016/0143-7208(90)87024-W
  34. Gawale, Y., & Sekar, N. (2018)., Fluorescent pyridopyrimidine fused pyranones—Design, synthesis, fluorescent whitening and DFT studies., Journal of Luminescence, 194, 248–256. https://doi.org/10.1016/ j.jlumin.2017.10.027
  35. Konstantinova, T. N., & Miladinova, P. M. (2009)., Synthesis and properties of some fluorescent 1,8-naphthalimide derivatives and their copolymers with methyl methacrylate., Journal of Applied Polymer Science, 111(4), 1991–1998. https://doi.org/10.1002/app.29218
  36. Liu, Y., Guo, G., Zhang, J., & Sun, Y. E. (2001)., Synthesis and application of polymeric fluorescent whitening agents., Journal of Surfactants and Detergents, 4(2), 151–154. https://doi.org/10.1007/s11743-001-0168-2
  37. Patil, V. S., Padalkar, V. S., Chaudhari, A. S., & Sekar, N. (2012)., Intrinsic catalytic activity of an acidic ionic liquid as a solvent for quinazoline synthesis., Catalysis Science & Technology, 2(8), 1681-1684.
  38. Patil, V. S., Padalkar, V. S., & Sekar, N. (2014)., 2-Methyl-4-oxo-N-(4-oxo-2-phenyl substituted-1,3-thiazolidin-3-yl)-3,4-dihydroquinazoline-5-carboxamides—A New Range of Fluorescent Whiteners: Synthesis and Photophysical Characterization., Journal of Fluorescence, 24(4), 1077–1086. https://doi.org/10.1007/s10895-014-1387-y
  39. Naik, H. A., & Seshadri, S. (1988)., Novel synthesis of fluorescent whiteners of the Palanil White R series., Dyes and Pigments, 9(5), 351–356. https://doi.org/10.1016/0143-7208(88)80004-4
  40. Rangnekar, D. W., & Tagdiwala, P. V. (1986)., Synthesis of 6-Acetamido-2-substituted Quinoxaline derivatives and their use as fluorescent whiteners for polyester fibres., Dyes and Pigments, 7(6), 445–455. https://doi.org/10.1016/ 0143-7208(86)80011-0
  41. Rangnekar, D. W., & Shenoy, G. R. (1987)., Synthesis of 7H-Benzo [de] -s-triazolo [5,1-a] isoquinolin-7-one derivatives and study of their fluorescent properties., Dyes and Pigments, 8(4), 291–299. https://doi.org/10.1016/0143-7208(87)85019-2