International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Effect of Salicylic acid and Uniconazole on Pigments and Antioxidant activities in Panicum miliaceum (Broomcorn millet or Proso millet)

Author Affiliations

  • 1Department of Life Sciences, Lachoo Memorial College of Science and Technology, Jodhpur (Rajasthan), India
  • 2Department of Life Sciences, Lachoo Memorial College of Science and Technology, Jodhpur (Rajasthan), India

Res. J. Recent Sci., Volume 14, Issue (3), Pages 19-27, July,2 (2025)

Abstract

Different concentrations of salicylic acid (SA) and uniconazole (UCZ) were tested for their effects on chlorophyll content, ascorbic acid, phenol, catalase, and polyphenol oxidase in laboratory-grown Panicum miliaceum (TNAU-149 and K-1 cultivar) seedlings. It is well established that applying uniconazole and salicylic acid boosts antioxidant activity and aids plant growth under stressful environments. Thus, this study's objective was to evaluate how salicylic acid and uniconazole affected different enzymatic activities and plant pigments in two Panicum miliaceum cultivars. At both concentrations, SA decreased the ascorbic acid, chlorophyll a, b and carotenoid content in TNAU-149 seedlings. However, SA only reduced the levels of carotenoid, ascorbic acid, and chlorophyll a, b in K-1 seedlings at higher concentrations. In K-1 and TNAU-149 seedlings, SA raised polyphenol oxidase, catalase, and phenol levels. In both TNAU-149 and K-1 seedlings, uniconazole raised the levels of phenol, carotenoid, chlorophyll a and b, and catalase activity, while decreasing the levels of ascorbic acid. In K-1, uniconazole reduced polyphenol oxidase, while in TNAU-149 seedlings, it increased.

References

  1. Thakur P. S. and A. Thakur (1993)., Influence of triacontanol and mixtalal during plant moisture stress in Lycopersicon esculantum., Plant Physiol. Biochem., 31(3), 433-439.
  2. Mahdavian, K., Kalantari, K. M. and Ghorbanli, M. (2007)., The effect of Different concentrations of Salicylic acid on protective enzyme activities of pepper (Capsicum annuum L.) Plants., Pakistan journal of Biological Sciences, 10 (18), 3162-3165.
  3. Simaei, M., Khavarinejad, R.A. and Saadatmand, S. (2011)., Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity., Russian Journal of Plant Physiology, 58, Article No. 783.
  4. Habibi, G. (2012)., Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress., Acta Biol. Szeged., 56, 57–63.
  5. Nazar, R., Iqbal, N., Syeed, S., and Khan, N. A. (2011)., Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars., J. Plant Physiol., 168, 807–815. doi: 10.1016/ j.jplph.2010.11.001
  6. Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H. and Hasegawa, P. M. (2013)., SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis., Plant J., 73, 91–104.
  7. Ye, Q.F., Zhou, W.J., Xi, W.F. and Fang, J.Y. (1995)., Effects of S-3307 on levels of endogenous (IAA, ABA and ZT) and physiological of rape seedlings., Acta Agri. Zhejiang., 7, 451-456
  8. Siegel, M.R. (1981)., Sterol-inhibiting fungicides: Effects on sterol biosynthesis and sites of action., Plant Dis., 65, 986-989.
  9. Davis, T. D., Steffens, G.L. and Sankhla, N. (1988)., Triazole plant growth regulators., In: Janick J. (ed.) Hort. Rev. Timber Press, Portland, Oregon, 10, 63-105.
  10. Gilley A. and Fletcher R.A. (1997)., Relative efficacy of paclobutrazol, propiconazol and tetraconazol as stress protectants in wheat seedlings., Plant Growth Regul., 4, 181-188.
  11. Zhou, W. and Ye, Q. (1996)., Physiological and yield effects of uniconazole on winter rape (Brassica napus L.)., Journal of Plant Growth Regulation, 15(2), 69-73.
  12. Fletcher, R.A. and Hofstra, G. (1988)., Triazole as potential plant protectants. In sterol biosynthesis inhibitors in plant production., Eds. D Berg, M Plempel Ellis Horwood Ltd, Cambridge, 321-331.
  13. Zhang, M.C., Duan, L.S., Tian, X.L., He, Z.P., Li, J.M., Wang, B.M. and Li, Z.H. (2007)., Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system., J. Plant Physiol.,164, 709–717.
  14. Rachie, K. O. (1975)., The Millets. Importance, Utilization and Outlook., Hyderabad: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
  15. Kothari, S. L., Kumar, S., Vishnoi, R. K., Kothari, A., and Watanabe, K. N. (2005)., Applications of biotechnology for improvement of millet crops: review of progress and future prospects., Plant Biotechnol., 22, 81–88. doi: 10.5511/plantbiotechnology.22.81
  16. Fuller, D. Q. (2006)., A Millet Atlas: Some Identification Guidance., London: University College London.
  17. Zou, C., Li, L. and Miki, D. (2019)., The genome of broomcorn millet., Nat Commun., 10, 436.
  18. Arnon, D. I. (1949)., Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris., Plant Physiol., 24: 1-5.
  19. Ranganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products. Tata McGraw Hill Publishing Co. Ltd., New Delhi; 190-210., undefined, undefined
  20. Singleton, V.L, Orthofer, R. and Lamuela- Raventos, R.M. (1999)., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent., Methods in enzymology, 299, 152-178.
  21. Chance, B. and Maehly, A.C. (1955). Assay of catalase and peroxidases. Methods Enzymol. 2: 764-775., undefined, undefined
  22. Canacki, S. (2008)., Effects of Salicylic acid on fresh weight change, chlorophyll and protein amounts of Radish (Raphanus sativus L.) seedlings., Journal of Biological Sciences, 8(2), 431-435.
  23. Canacki, S. and Munzuroglu, O. (2002)., Effects of acetylsalicylic acid application to the roots of bean (Phaseolus vulgaris L.) and corn (Zea mays L) seedlings on transpiration rate and weight changes., Firat University J. Sci. Eng. Sci. 14(2):1-9.
  24. Pancheva, T.V., Popova, L.P. and Uzunova, A.N. (1996)., Effects of Salicylic acid on growth and photosynthesis in barley plants., J. Plant Physiol., 149, 57-63.
  25. Moharekar, S.T., Lokhande, S.D. (Moharekar), Hara, T., Tanaka, R., Tanaka, A. and Chavan, P.D. (2003)., Effect of Salicylic Acid on Chlorophyll and Carotenoid Contents of Wheat and Moong Seedlings., Photosynthetica, 41(2), 315-317.
  26. Karimian, M., Fazeli-Nasab, B., Sayyed, R.Z., Ilyas, N., Almalki, W.H., Vats, S., Munir, S., Said, H., and Rahi, A.A. (2023)., Salicylic Acid Foliar Spray Promotes Yield, Yield Components, and Physiological Characteristics In Foxtail Millet Under Drought Stress., Pak. J. Bot., 55(SI): DOI: http://dx.doi.org/10.30848/PJB2023-SI(12)
  27. Aftab, T., Masroor, M., Khan, A., Idrees, M., Naeem, M. and Moinuddin (2010)., Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L., J. Crop Sci. Biotechnol. 13, 183–188.
  28. Cag, S., Cevahir-Öz, G., Sarsag, M. and Gören-Saglam, N. (2009)., Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons., Pak. J. Bot., 41, 2297–2303.
  29. Bisht, R. (1999)., Photosynthetic potential and metabolic responses of some important minor millets to environmental stress and plant growth regulators., Ph.D. Thesis, J.N. Vyas University, Jodhpur (India).
  30. Ud-deen, M.M., Hossain, T. and Alam, A.M.S. (2006)., Effect of uniconazole on biochemical changes in onion (Allium cepa L.)., J Life Earth Sci. 1(2): 9-12.
  31. Fletcher, R. A. and Arnold, V. (1986)., Stimulation of cytokinins and chlorophyll synthesis in cucumber cotyledons by Triadimefon., Physiol. Plant., 66, 197-201.
  32. Wood, B.W. (1984)., Influence of paclobutrazol on selected growth and chemical characteristics of Young Pecan seedlings., Hort Science, 19(6), 837-839.
  33. Apelbaum, A. and Yang, S.F. (1981)., Biosynthesis of stress ethylene induced by water deficit., Plan Physiol., 68, 594-596.
  34. Wright, S.T.C. (1977)., The relationship between leaf water potential and the levels of abscisic acid and ethylene in excised wheat leaves., Planta., 13(7), 183-189.
  35. Nie, L., Liu, H. X. and Chen, L.G. (2000)., Effects of uniconazole on growth, photosynthesis and yield of longan., In: ISHS Acta Horticulturae 558: I International Symposium on Litchi and Longan.
  36. Gopi, R., Jaleel, C.A., Divyanair, V., Azooz, M.M. and Panneerselvam, R. (2009)., Effect of Paclobutrazol and ABA on Total Phenol Contents in Different Parts of Holy Basil (Ocimum sanctum)., Academic J. Plant Sci., 2(2), 97-101.
  37. Kurian, R. M., Y. T. N. Reddy, R. K. Sonkar and V. V. P. Reddy (2001)., Effect of paclobutrazol on source- sink relationship in mango (Mangifera indica L.)., J. Appl. Hort., 3(2), 88-90.
  38. Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A. and Meena, R.C. (2005)., Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings., Plant Science, 169(3), 559-570.
  39. Durner, J. and Klessig, D.F. (1995)., Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses., In: Proc Natl Acad Sci. USA., 92(24), 11312-11316.
  40. Sankhla, N., Upadhyaya, A., Davis, T.D. and Sankhla, D. (1992)., Hydrogen peroxide scavenging enzyme and antioxidants in Echinochloa frumentacea as affected by triazole growth regulators., Plant Growth Regul., 11(4), 441-448.
  41. Jaleel, A., in Gopi, C.R. and Panneerselvam, R. (2007)., Alterations in lipid peroxidation, electrolyte leakage and proline metabolism Catharanthus roseus under treatment with triadimefon, a systemic fungicide., Comptes Rendus Biologies., 330(12), 905-912.
  42. Rajasekar, M., Rabert, G.A. and Manivannan, P. (2015)., Triazole induced changes on biochemical and antioxidant metabolism of Zea mays L. (Maize) under drought stress., Journal of Plant Stress Physiology, 1(1), 35-42.
  43. Rabert, G.A., Rajasekar, M., Manivannan, P., Somasundaram, R. and Panneerselvam, R. (2013)., Effect of triazole fungicide on biochemical and antioxidant enzymes activity in okra (Abelmoschus esculentus L.) plant under drought stress., Int J Agric Food Sci., 3, 100-7.
  44. Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q. and Ahmad, A. (2008)., Effect of Salicylic Acid on Salinity-induced Changes in Brassica juncea., Journal of Integrative Plant Biology, 50(9), 1096 – 1102.
  45. Shi, Q.H., Bao, Z.Y. and Zhu, Z.J. (2006)., Effects of Different Treatments of Salicylic Acid on Heat Tolerance, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in Seedlings of Cucumis sativa L., Plant Growth Regul., 48, 127–135.
  46. Liu, X., Rockett, K.S., Kørner, C.J. and Pajerowska, K.M. (2015)., Salicylic acid signalling: New insights and prospects at a quarter-century milestone., Essays Biochem, 58, 101-113.
  47. Mahdavian, K., Kalantari, K.M. and Ghorbanli, M. (2007)., The effect of different concentrations of salicylic acid on protective enzyme activities of pepper (Capsicum annuum L.) plants., Pak J Biol Sci., 10(18), 3162-5.
  48. Wang, K., Shen, Y., Wang, H., He, S., Kim, W. S., Shang, W., Wang, Z. and Shi, L. (2022)., Effects of Exogenous Salicylic Acid (SA), 6-Benzylaminopurine (6-BA), or Abscisic Acid (ABA) on the Physiology of Rosa hybrida ‘Carolla’ under High-Temperature Stress., Horticulturae. 8(9), 851.
  49. He, Y., Liu, Y., Cao, W., Huai, M., Xu, B. and Huang, B. (2005)., Effects of Salicylic Acid on Heat Tolerance Associated with Antioxidant Metabolism in Kentucky Bluegrass., Crop Sci., 45, 988–995.
  50. Yali, H., Youliang, L., Weixing, C., Mingfang, H., Baogang, X. and Bingru, H. (2005)., Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass., J Crop Sci., 45, 988-995.
  51. Jaleel, C.A., Gopi, R., Lakshmanan, G.M.A. and Panneerselvam, R. (2006)., Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Science. 171(2): 271-276., undefined
  52. Rafique, N., Aqeel, M., Raja, N.I., Shabbir, G., Ajaib, M., Sayyed, R.Z., Alharbi, S.A. and Ansari, M.J. (2023)., Interactive effects of melatonin and salicylic acid on Brassica napus under drought condition., Plant and Soil, 505: 65–84.
  53. Tanveer, S., Akhtar, N., Ilyas, N., Sayyed, R.Z., Fitriatin, B.N., Parveen, K. and Bukhari, N.A. (2023)., Interactive effects of Pseudomonas putida and salicylic acid for mitigating drought tolerance in Canola (Brassica napus L.)., Heliyon, 9(3), 14193
  54. Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J.A., Jatav, H.S., Sharma, S., Punia, H., Sayyed, R.Z., Almalki, W.H. and Poczai, P. (2022)., Role of salicylic acid in combating heat stress in plants: Insights into modulation of vital processes., Frontiers Front. Biosci., 27(11), 310.