International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Pyrolysis of Plastic Bags from Household Waste

Author Affiliations

  • 1Laboratory of Rural Engineering, National University of Agriculture (LGR/UNA), 01 BP 55 Porto Novo, Benin
  • 2laboratory of Engineering Sciences and Applied Mathematics, National University of Science Technology Engineering and Mathematics, Abomey, Benin
  • 3Laboratory of Rural Engineering, National University of Agriculture (LGR/UNA), 01 BP 55 Porto Novo, Benin
  • 4Research Unit on Molecular Interactions, Study and Research Laboratory in Applied Chemistry of the Polytechnic School of Abomey-Calavi, University of Abomey-Calavi (URIM/LERCA/ EPAC/UAC), 01 BP 2009 Cotonou, Benin and Pluridisciplinary Research Laboratory for Technical Education (LARPET), National University of Science Technology Engineering and Mathematics, BP 133 Lokossa, Benin
  • 5Laboratory of Rural Engineering, National University of Agriculture (LGR/UNA), 01 BP 55 Porto Novo, Benin
  • 6Laboratory of Rural Engineering, National University of Agriculture (LGR/UNA), 01 BP 55 Porto Novo, Benin
  • 7Pluridisciplinary Research Laboratory for Technical Education (LARPET), National University of Science Technology Engineering and Mathematics, BP 133 Lokossa, Benin
  • 8Laboratory of study and research on the wood material, University of Lorraine, UMR 1073, INRA, ENGREF, UHP, ENSTIB 27, BP 1041, 88 051 Epinal Cedex, France
  • 9Laboratory of study and research on the wood material, University of Lorraine, UMR 1073, INRA, ENGREF, UHP, ENSTIB 27, BP 1041, 88 051 Epinal Cedex, France

Res. J. Recent Sci., Volume 14, Issue (3), Pages 1-13, July,2 (2025)

Abstract

Plastic bags are a common sight in West Africa, particularly in household waste. Their widespread distribution has a negative impact on the environment. Solutions need to be found to recycle them more effectively. Pyrolysis is a promising method for testing plastic bags for their thermal behavior. In this study, a laboratory test was conducted for the pyrolysis of low-density polyethylene (LDPE) in a pilot reactor. Analytical devices such as Fourier transform infrared (FTIR), gas chromatography-combustion thermal detector (GC-CTD), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-flame ionization detector (GC-FID) were used to determine material and energy balances, and the composition of condensable and non-condensable gases. The results show that PE is a very good fuel in terms of energy, but its environmental impact remains undeniably negative. Therefore, the use of PE will be much more sustainable if it is mixed with other types of fuel to reduce its environmental impact.

References

  1. Adeniyi, A. G., & Ighalo, J. O. (2020)., Simulation of low density polyethylene (LDPE) pyrolysis and optimisation of pyro-oil yield., International Polymer Processing, 35(2), 229-235.
  2. Kple, M., Girods, P., Fagla, B., Anjorin, M., Ziegler-Devin, I., & Rogaume, Y. (2017)., Kinetic study of low density polyethylene using thermogravimetric analysis, Part 2: Isothermal study., Waste and Biomass valorization, 8, 707-719.
  3. Kolibaba, O. B., Sokolskiy, A. I., & Gabitov, R. N. (2017)., Research of the pyrolysis of municipal solid waste aimed at improving the efficiency of thermal reactors., International Journal of Energy for a Clean Environment, 18(2).
  4. Puckins, A. I., Osipovs, P. S., & Osipovs, S. D. (2024)., Method for the determination of tar produced from the pyrolysis of used tires., International Journal of Energy for a Clean Environment, 25(1).
  5. Eren, M. R., Güneş, I., & Varol, E. A. (2024)., The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes., International Journal of Energy for a Clean Environment, 25.
  6. Adeyanju, A. A., & Manohar, K. (2023)., Experimental analysis and performance of a waste plastics pyrolysis system for biofuel production., International Journal of Energy for a Clean Environment, 24(8).
  7. Osipovs, S. D., Puckins, A. I., Mežaraupe, S., & Lazdāns, D. (2022)., Determination of Pollutants in Industrial Water Used for Cooling Gases in Waste Pyrolysis Process., International Journal of Energy for a Clean Environment, 23(5).
  8. Kple, M., Girods, P., Anjorin, M., Fagla, B., & Rogaume, Y. (2016)., Thermal degradation of household solid waste in the town of Abomey-Calavi in Benin: kinetic study., Waste and biomass valorization, 7, 59-70.
  9. Kple, M., Nonviho, G., Doto, V., Aza-Gnandji, M., Chabi, E., Bagan, G., & Houngan, A. (2022)., Study of the combustion in a rotary kiln of model household waste from the city of Abomey-Calavi in Benin., Research Journal of Engineering Sciences, 11(3), 1-11.
  10. Brandelet, B., Kple, M., Girods, P., Rose, C., Rogaume, C., & Rogaume, Y. (2016)., Thermal degradation of cellulosic and plastic material: kinetic and particles determining study in combustion., International Journal of Energy, Environment and Economics, 24(2/3), 173.
  11. Kple, M., Fagla, B. F. Z., Anjorin, M., Girods, P. & Rogaume, Y. (2016)., Thermal degradation of household solid wastes with TGA: cellulosic and plastic materials., Sylwan Journal 36–47.
  12. Łach, Ł., & Svyetlichnyy, D. (2024)., Recent Progress in Heat and Mass Transfer Modeling for Chemical Vapor Deposition Processes., Energies, 17(13), 3267.
  13. Ngusale, G. K., Oloko, M., Agong, S., & Nyakinya, B. (2017)., Energy recovery from municipal solid waste., Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1807-1814.
  14. Ballice, L. (2002)., Classification of volatile products evolved during temperature-programmed co-pyrolysis of low-density polyethylene (LDPE) with polypropylene (PP)., Fuel, 81(9), 1233-1240.
  15. Mastral, F. J., Esperanza, E., Garcıa, P., & Juste, M. (2002)., Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time., Journal of Analytical and Applied Pyrolysis, 63(1), 1-15.
  16. Levendis, A. Y., & Ponagiotou, T. (1991)., Experimental Techniques to Study the Combustion Characteristics of two commonly found in Municipal wastes., Municipal Waste Combustion, 73-86.
  17. Kawaguchi, O., Ohtani, T., & Kojima, H. (1997)., Thermal decomposition process of a polyethylene pellet in a hot stagnation flow., Combustion science and technology, 130(1-6), 411-421.
  18. Kiran, N., Ekinci, E., & Snape, C. E. (2000)., Recyling of plastic wastes via pyrolysis., Resources, Conservation and Recycling, 29(4), 273-283.
  19. Piao, M., Chu, S., Zheng, M., & Xu, X. (1999)., Characterization of the combustion products of polyethylene., Chemosphere, 39(9), 1497-1512.
  20. Milne, B. J., Behie, L. A., & Berruti, F. (1999)., Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor., Journal of Analytical and Applied Pyrolysis, 51(1-2), 157-166.
  21. Green, A. E. S., & Sadrameli, S. M. (2004)., Analytical representations of experimental polyethylene pyrolysis yields., Journal of analytical and applied pyrolysis, 72(2), 329-335.
  22. Ouiminga, S. K., Rogaume, T., Sougoti, M., Commandre, J. M., & Koulidiati, J. (2009). Experimental characterization of gaseous species emitted by the fast pyrolysis of biomass and polyethylene. Journal of Analytical and Applied Pyrolysis, 86(2), 260-268., undefined, undefined
  23. KPLE, M. M. (2022)., Caractérisation du mélange combustible des déchets solides ménagers (DSM) de la ville d’Abomey-Calavi: Elaboration du déchet modèle., Sciences des Structures et de la Matière, 6(1).
  24. Dufour, A., Girods, P., Masson, E., Rogaume, Y., & Zoulalian, A. (2009)., Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution., International Journal of hydrogen energy, 34(4), 1726-1734.
  25. Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., & Zoulalian, A. (2009)., Comparison of gasification and pyrolysis of thermal pre-treated wood board waste., Journal of Analytical and Applied Pyrolysis, 85(1-2), 171-183.
  26. Ouiminga, S. K., Rogaume, T., Daho, T., Yonli, A. H., & Koulidiati, J. (2012)., Reductive and oxidative combustion of polyethylene bags: Characterization of carbonaceous and nitrogenous species., Journal of Analytical and Applied Pyrolysis, 98, 72-78.
  27. Fayçal, B. A., Koucka, O. S., Harouna, G. I., Sadio, S. S., & Antoine, B. (2021)., Caractérisation Expérimentale De Briquettes À Base de déchets papiers/cartons et étude de l’impact du liant lors de leur conception., J. P. Soaphys, 3(1), C21A04.
  28. Gado, I. H., Ouiminga, S. K., Daho, T., Yonli, A. H., Sougoti, M., & Koulidiati, J. (2014)., Characterization of briquettes coming from compaction of paper and cardboard waste at low and medium pressures., Waste and Biomass Valorization, 5, 725-731.
  29. Ibrahim, H. G., Ouiminga, S. K., Yonli, A., Sanogo, O., Daho, T., & Koulidiati, J. (2018)., Study of temperature fields and heavy metal content in the ash and flue gas produced by the combustion of briquettes coming from paper and cardboard waste., Recycling, 3(3), 32.
  30. Arafat, H. A., Jijakli, K., & Ahsan, A. (2015)., Environmental performance and energy recovery potential of five processes for municipal solid waste treatment., Journal of Cleaner Production, 105, 233-240.
  31. Chen, Y. C. (2016)., Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach., Waste Management, 58, 408-414.
  32. Kumar, S., & Singh, R. K. (2011)., Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis., Brazilian journal of chemical engineering, 28, 659-667.
  33. Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021)., Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments., Renewable and Sustainable Energy Reviews, 145, 111073.
  34. Mangeot, A. (2012)., Étude expérimentale et développement numérique d,
  35. Gascoin, N., Navarro-Rodriguez, A., Gillard, P., & Mangeot, A. (2012)., Kinetic modelling of high density polyethylene pyrolysis: Part 1. Comparison of existing models., Polymer degradation and stability, 97(8), 1466-1474.
  36. Kplé, M., Nonviho, G., Chabi, E., Doto, V., Aza-Gnandji, M., Bagan, G., ... & Rogaume, Y. (2022)., Kinetic study of pyrolysis of low density polyethylene using thermogravimetric analysis: Dynamic study., RAMRes Sciences des Structures et de la Mantière, 6(1), 106-122.