International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Numerical simulation of the performance of a supersonic ejector for solar refrigeration applications

Author Affiliations

  • 1Beninese Center for Scientific Research and Innovation, Cotonou, Benin and Laboratory of Processes and Technological Innovations of Lokossa , UNSTIM, Benin
  • 2Beninese Center for Scientific Research and Innovation, Cotonou, Benin and Thermal and Energy Laboratory of Nantes ( LTeN ), UMR 6607 CNRS Nantes, France
  • 3Laboratory of Processes and Technological Innovations of Lokossa , UNSTIM, Benin
  • 4Laboratory of Processes and Technological Innovations of Lokossa , UNSTIM, Benin
  • 5Industrial Systems and Environmental Engineering Research Unit (URISIE), Bandjoun, Cameroon

Res. J. Recent Sci., Volume 14, Issue (2), Pages 18-28, April,2 (2025)

Abstract

Ejectors find use in various fields such as aerospace, propulsion and refrigeration. They are expansion devices that use the kinetic energy of a primary flow for the compression of a secondary flow. Their performance remains low, which still makes their wide market penetration difficult compared to more conventional systems. Aligning with the above-mentioned objectives, the present work addresses the evaluation of five recognized turbulence models to study supersonic ejectors on a refrigeration system operating with R134a refrigerant. Validation focused on shock position, shock force with mean pressure recovery projection. The study focused on the influence of operating conditions, primary nozzle outlet position and wall roughness degree on the performance of a supersonic ejector. The Navier-Stokes equations for a two-dimensional, axisymmetric and stationary flow were discretized by the finite volume method under the ANSYS environment with a joint use of data from the REFPROP 7.0 database (REF rigerants PROP erties). The simulation of four two-equation turbulence models (standard k-ε, k-ε RNG, k-ε feasible and standard k-ω), as well as a four-equation model (SST transition), in their version for high Reynolds number is carried out. The numerical model is in good agreement with the experimental pressure profiles. The results presented concern in particular the structure of the mixing layer and the transient character of the shock wave position in the ejector. The results reveal that all models predict a good entrainment ratio. The standard k-ω model gives a better accuracy. It anticipates the onset of the shock at x=0m. The shock of the other models appears afterwards but always in the mixing chamber (between 0 and 0.04m).

References

  1. Victorin, C. K., Louis, A. O., Alain, A., & Clotilde, G. T. (2020)., Parametric study of NH3/CO2 cascade refrigeration cycles for hot climates., Int. J. Res. Rev, 7, 219-229.
  2. Chegnimonhan, V. K., Aredokou, L. O., Vissoh, L., Guidi, C. T., & Kounouhewa, B. (2021)., Prospective study of single-stage carbon dioxide refrigeration cycles in a tropical climate., International Advance Journal of Engineering Research, 4(11), 1-7.
  3. Aredokou, L. O., Chegnimonhan, V. K., Tiam, K. P., Guidi, C., & Kounouhewa, B. (2023)., Thermodynamic Modelling, Technical and Operational Issues of Supercritical Carbon Dioxide Power Generation Cycles for Industrial Applications: A Literature., IRA-International Journal of Applied Sciences, 18(4), 85.
  4. Meyer, A. J., Harms, T. M., & Dobson, R. T. (2009)., Steam jet ejector cooling powered by waste or solar heat., Renewable Energy, 34(1), 297-306.
  5. Aredokou, L. O., Chegnimonhan, V. K., Guidi, C. T., Kapen, P. T., & Kounouhewa, B. (2024)., Transcritical carbon dioxide refrigeration and air conditioning cycles and applications: State of the art., Research Journal of Engineering Sciences, 13(1), 28-40.
  6. Abdulateef, J. M., Sopian, K., Alghoul, M. A., & Sulaiman, M. Y. (2009)., Review on solar-driven ejector refrigeration technologies., Renewable and Sustainable Energy Reviews, 13(6-7), 1338-1349.
  7. Chegnimonhan, A. O. louis, Tognon Clotilde, G., & Alain, A.(2021)., Investigating the performance of a transcritical booster refrigeration system with carbon dioxide in tropical climates: The case of Benin., International Journal of Advanced Research, 9(02), 226-238.
  8. Chunnanond, K., & Aphornratana, S. (2004)., Ejectors: applications in refrigeration technology., Renewable and sustainable energy reviews, 8(2), 129-155.
  9. Elbel, S. (2011)., Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications., International Journal of Refrigeration, 34(7), 1545-1561.
  10. Sumeru, K., Nasution, H., & Ani, F. N. (2012)., A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle., Renewable and Sustainable Energy Reviews, 16(7), 4927-4937.
  11. Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. (2005)., Numerical and experimental investigations on supersonic ejectors., International Journal of Heat and Fluid Flow, 26(1), 56-70.
  12. Marynowski, T., Desevaux, P., & Mercadier, Y. (2009)., Experimental and numerical visualizations of condensation process in a supersonic ejector., Journal of visualization, 12, 251-258.
  13. Bouhanguel, A., Desevaux, P., & Gavignet, E. (2011)., Flow visualization in supersonic ejectors using laser tomography techniques., International journal of refrigeration, 34(7), 1633-1640.
  14. Zhu, Y., & Jiang, P. (2014)., Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance., International journal of refrigeration, 40, 31-42.
  15. Scott, D., Aidoun, Z., Bellache, O., & Ouzzane, M. (2008)., CFD simulations of a supersonic ejector for use in refrigeration applications.,
  16. Cai, Y., Zhu, C., Jiang, Y., & Shi, H. (2015)., Modeling and calculation of open carbon dioxide refrigeration system., Energy Conversion and Management, 89, 92-98.
  17. Mazzelli, F., & Milazzo, A. (2015)., Performance analysis of a supersonic ejector cycle working with R245fa., International journal of refrigeration, 49, 79-92.
  18. Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T., & Aphornratana, S. (2007)., Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique., Energy Conversion and Management, 48(9), 2556–2564.
  19. Sriveerakul, T., Aphornratana, S., & Chunnanond, K. (2007)., Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results., International Journal of Thermal Sciences, 46(8), 812–822.
  20. Ruangtrakoon, N., Thongtip, T., Aphornratana, S., & Sriveerakul, T. (2013)., CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle., International Journal of Thermal Sciences, 63, 133–145.
  21. Zhu, J., & Elbel, S. (2016)., A New Control Mechanism for Two-Phase Ejector in Vapor Compression Cycles Using Adjustable Motive Nozzle Inlet Vortex., 11.
  22. Boupda, O. T., Lontsi, F., Djiako, T., & Ekani, R. (2025)., Development and exergo-energetic analysis of an energy-efficient solar-assisted transcritical CO2 refrigeration system with two-phase ejector., Energy Conversion and Management: X, 25, 100854.
  23. Boumaraf, L., Haberschill, P., & Lallemand, A. (2009)., Amélioration de l’efficacité énergétique d’un cycle Transcritique au CO2 a l’aide d’un éjecteur., 7.
  24. García del Valle, J., Sierra-Pallares, J., Garcia Carrascal, P., & Castro Ruiz, F. (2015)., An experimental and computational study of the flow pattern in a refrigerant ejector. Validation of turbulence models and real-gas effects., Applied Thermal Engineering, 89, 795–811.
  25. Hamzaoui, M., Nesreddine, H., & Aidounc, Z. (2022)., Structure de l’écoulement et de mélange dans un éjecteur supersonique gaz-gaz installé dans un système frigorifique d’une capacité de 10TR.,
  26. ANSYS Fluent (2023)., ANSYS Viewer Users Guide 18.2., PDF | Trademark | Copyright. Scribd. Retrieved February 12, 2023, from https://www.scribd.com/ document/536367529/ANSYS-Viewer-Users-Guide-18-2
  27. Falat, A. (2018)., Étude expérimentale du comportement d, Ecole Polytechnique, Montreal (Canada).
  28. Hadj, A., Boulenouar, M., & Benfettouma, M. (2018)., Étude des Performances d’un Éjecteur par la Méthode Numérique de la Dynamique des Fluides pour une Application de Réfrigération Alimentée par l’Énergie Solaire., no. figure, 2, 2-5.