International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

A natural material for sustainable infrastructure in Pobe: case of palm fibres

Author Affiliations

  • 1Multidisciplinary Research Laboratory for Technical Education (LARPET), National University of Technological Sciences, Engineering and Mathematics, Lokossa BP 133, Benin
  • 2Multidisciplinary Research Laboratory for Technical Education (LARPET), National University of Technological Sciences, Engineering and Mathematics, Lokossa BP 133, Benin
  • 3Materials and Structures Laboratory (LAMS), ESGC-VAK, Cotonou, Benin

Res. J. Recent Sci., Volume 14, Issue (2), Pages 1-10, April,2 (2025)

Abstract

Clay soils, due to the presence of swelling minerals, are prone to shrink-swell. Soil stabilisation is commonly used to reduce this risk, especially for light, shallow constructions. In Benin, palm branches are often discarded, polluting the environment. This study examines the impact of palm fibers on the geo-mechanical properties of the soil in Igana commune in Pobè. Physical and mechanical tests were carried out. The physical tests classify this soil as A-7-5 according to the HRB classification: a clayey soil, of the very plastic, non-organic, non-inactive silt type, with a high swelling potential and a high plasticity index. The mechanical tests revealed that adding 0.30% fiber increased the compressive strength at 7 days, reaching 0.025 MPa, confirmed by the flexural test with the same fibre content. As for the other mechanical tests, we obtained a maximum value of 1.63 for 95% raw clay in the CBR test and a maximum cohesion at 0.15% palm fiber in the shear test.

References

  1. Agbelele, K. J., AÏSSE, G. L. G., Abalo, P. K. L. A., & DEGAN, G. (2016)., Caractérisation physico-mécanique des sols argileux de la dépression d’Issaba au Sud-Est du Bénin., Afrique sciences, 12(2), 206-221.
  2. Lambert, S., & Pengelly, A. (2022)., Modification in situ de la sensibilité des argiles au gonflement pour les fondation superficielles de batiments., In 11èmes journées nationales de géotechnique et de géologie de l’ingénieur.
  3. Al-Akhras, N. M., Attom, M. F., Al-Akhras, K. M., & Malkawi, A. I. H. (2008)., Influence of fibers on swelling properties of clayey soil., Geosynthetics International, 15(4), 304-309.
  4. Belanteur, N., Tacherifet, S., & Pakzad, M. (1997)., Etude des comportements mécanique, thermo-mécanique et hydro-mécanique des argiles gonflantes et non gonflantes fortement compactées., Revue française de géotechnique, (78), 31-50.
  5. Rousset, G. (1988)., Comportement mécanique des argiles profondes: application au stockage de déchets radioactifs (Doctoral dissertation, Marne-la-vallée, ENPC).,
  6. Baldy, G., Belloti, R., Ghionna, V., Jamiolkowski, M., & LoPresti, D. (1989)., Modulus of sands from CPT and DMT. In Proceedings of 12th International Conference of Soil Mechanics & Foundation Engineering (pp. 165-170)., undefined
  7. Börgesson, L., Karnland, O., & Johannesson, L. E. (1996)., Modelling of the physical behaviour of clay barriers close to water saturation., Engineering Geology, 41(1-4), 127-144.
  8. Lingnau, B.E., Graham, J., & Tanaka, N. (1995)., Isothermal modeling of sand–bentonite mixtures at elevated temperatures., Canadian Geotechnical Journal, 32(1), 78-88.
  9. Salit, M. S. (2014)., Tropical natural fibre composites., Tropical Natural fibers and their properties, 15.
  10. Ziegler, S., Leshchinsky, D., Ling, H. I., & Perry, E. B. (1998)., Effect of short polymeric fibers on crack development in clays., Soils and Foundations, 38(1), 247-253.
  11. Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003)., New insulating particleboards from durian peel and coconut coir., Building and environment, 38(3), 435-441.
  12. Minasny, B., Fiantis, D., Mulyanto, B., Sulaeman, Y., & Widyatmanti, W. (2020)., Global soil science research collaboration in the 21st century: Time to end helicopter research., Geoderma, 373, 114299.
  13. Taallah, B., & Guettala, A. (2016)., The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers., Construction and Building Materials, 104, 52-62.
  14. Nacer, H. (2020)., Effet des différents méthodes d,
  15. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016)., Influence of groundnut shell ash on strength and durability properties of clay., Geomechanics and Geoengineering, 11(1), 20-27.
  16. Munirwan, R. P., Ramadhansyah, P. J., & Kamchoom, V. (2020)., Performance of coir fiber addition for clay as a sub-grade for pavement design., In IOP Conference Series: Materials Science and Engineering (Vol. 712, No. 1, p. 012009). IOP Publishing.
  17. Staljanssens, M., Marcoen, JM, Fabry, J., & Rassel, A. (1976)., Destruction of organic matter by low temperature ashing prior to mineralogical investigations of soils., Annals of the Geological Society of Belgium .
  18. Chen, A., Ding, C., Li, C., & Zhao, S. (2023)., Influence of palm fiber on strength and crack characteristics of red clay., Journal of Engineered Fibers and Fabrics, 18, 15589250231219756.
  19. Ahmed, T. W., Ali, A. A. M., & Zidan, R. S. (2020)., Properties of high strength polypropylene fiber concrete containing recycled aggregate., Construction and Building Materials, 241, 118010.
  20. Agbelele, K. J., AÏSSE, G. L. G., Abalo, P. K. L. A., & DEGAN, G. (2016)., Caractérisation physico-mécanique des sols argileux de la dépression d’Issaba au Sud-Est du Bénin., Afrique sciences, 12(2), 206-221.
  21. Lambert, S., & Pengelly, A. (2022)., Modification in situ de la sensibilité des argiles au gonflement pour les fondation superficielles de batiments., In 11èmes journées nationales de géotechnique et de géologie de l’ingénieur.
  22. Al-Akhras, N. M., Attom, M. F., Al-Akhras, K. M., & Malkawi, A. I. H. (2008)., Influence of fibers on swelling properties of clayey soil., Geosynthetics International, 15(4), 304-309.
  23. Belanteur, N., Tacherifet, S., & Pakzad, M. (1997)., Etude des comportements mécanique, thermo-mécanique et hydro-mécanique des argiles gonflantes et non gonflantes fortement compactées., Revue française de géotechnique, (78), 31-50.
  24. Rousset, G. (1988)., Comportement mécanique des argiles profondes: application au stockage de déchets radioactifs (Doctoral dissertation, Marne-la-vallée, ENPC).,
  25. Baldy, G., Belloti, R., Ghionna, V., Jamiolkowski, M., & LoPresti, D. (1989)., Modulus of sands from CPT and DMT. In Proceedings of 12th International Conference of Soil Mechanics & Foundation Engineering (pp. 165-170)., undefined
  26. Börgesson, L., Karnland, O., & Johannesson, L. E. (1996)., Modelling of the physical behaviour of clay barriers close to water saturation., Engineering Geology, 41(1-4), 127-144.
  27. Lingnau, B.E., Graham, J., & Tanaka, N. (1995)., Isothermal modeling of sand–bentonite mixtures at elevated temperatures., Canadian Geotechnical Journal, 32(1), 78-88.
  28. Salit, M. S. (2014)., Tropical natural fibre composites., Tropical Natural fibers and their properties, 15.
  29. Ziegler, S., Leshchinsky, D., Ling, H. I., & Perry, E. B. (1998)., Effect of short polymeric fibers on crack development in clays., Soils and Foundations, 38(1), 247-253.
  30. Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003)., New insulating particleboards from durian peel and coconut coir., Building and environment, 38(3), 435-441.
  31. Minasny, B., Fiantis, D., Mulyanto, B., Sulaeman, Y., & Widyatmanti, W. (2020)., Global soil science research collaboration in the 21st century: Time to end helicopter research., Geoderma, 373, 114299.
  32. Taallah, B., & Guettala, A. (2016)., The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers., Construction and Building Materials, 104, 52-62.
  33. Nacer, H. (2020)., Effet des différents méthodes d,
  34. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016)., Influence of groundnut shell ash on strength and durability properties of clay., Geomechanics and Geoengineering, 11(1), 20-27.
  35. Munirwan, R. P., Ramadhansyah, P. J., & Kamchoom, V. (2020)., Performance of coir fiber addition for clay as a sub-grade for pavement design., In IOP Conference Series: Materials Science and Engineering (Vol. 712, No. 1, p. 012009). IOP Publishing.
  36. Staljanssens, M., Marcoen, JM, Fabry, J., & Rassel, A. (1976)., Destruction of organic matter by low temperature ashing prior to mineralogical investigations of soils., Annals of the Geological Society of Belgium .
  37. Chen, A., Ding, C., Li, C., & Zhao, S. (2023)., Influence of palm fiber on strength and crack characteristics of red clay., Journal of Engineered Fibers and Fabrics, 18, 15589250231219756.
  38. Ahmed, T. W., Ali, A. A. M., & Zidan, R. S. (2020)., Properties of high strength polypropylene fiber concrete containing recycled aggregate., Construction and Building Materials, 241, 118010.