International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Influence of coconut fibers on the physical and mechanical properties of stabilized compressed earth blocks

Author Affiliations

  • 1Laboratoire de Recherche en Science de l’Ingénieur (LARSI), University of Lomé, BP 1515, Lomé-Togo
  • 2Laboratoire de Recherche en Science de l’Ingénieur (LARSI), University of Lomé, BP 1515, Lomé-Togo
  • 3Laboratoire de Recherche en Science de l’Ingénieur (LARSI), University of Lomé, BP 1515, Lomé-Togo

Res. J. Recent Sci., Volume 14, Issue (1), Pages 17-24, January,2 (2025)

Abstract

Clay soil is a raw material commonly used for the manufacture of building materials, thanks to the different improvement techniques used. Binder stabilization or plant fiber reinforcement are among the techniques that are being studied and deepened with the aim of adding value to the properties of this material. The present study reveals the influence of the length and content of coconut fibers from the coconut palm on the physical and mechanical properties of stabilized compressed clay soil (BTCS) blocks. To do this, the clay soil from the Noèpé quarry (Togo) was mixed with the extracted fibers and cut into two length classes (0-6 and 6-10 cm). Three types of soil were used (70% Sand (S), 30% clay silt (CS); 75% S, 25% CS and 80% S and 20% CS). The land was stabilized with cement with a rate varying from 2 to 8% for a step of 2%. The fibers are incorporated into the clay-cement matrix with a mass content of soil varying from 0 to 0.4% for a step of 0.1%. The results obtained show that the density of the blocks decreases with the increase in the content of fibers incorporated for the two length classes and increases slightly with the content of cement. The opposite phenomenon is observed for capillary absorption, which increases with the fibers content and decreases with the increase in the cement content. Overall, the results show that compressive strength decreases with increasing fibers content.

References

  1. Anger, R., Fontaine, L., Joffroy, T., & Ruiz, E. (2011)., Construire en terre, une autre voie pour loger la planète., Secteur Privé & Développement, revue bimestrielle de Proparco, (10), 18-21.
  2. Houben H. and Guillaud H. (2006)., Treaty construction earth., CRA Terre, Edition Parenthèse, Marseille, France, 2006.355.
  3. Houben, H., Rigassi, V., & Garnier, P. (1996). Compressed Earth Blocks. Production Equipment., undefined, undefined
  4. Rowell, R. M. (2000)., Characterization and factors effecting fiber properties., Natural polymers and agrofibers based composites.
  5. Imen, S., & Belouettar, R. (2011)., Comportement mécanique des briques de terre crue renforcées par des fibres de palmier dattier et des fibres de paille., INVACO2 Séminaire International, Innovation & Valorisation en Génie civil & Matériaux de construction, (2p-118).
  6. Swamy, R. N. (1990)., Vegetable fibre reinforced cement composites–a false dream or a potential reality?., In Vegetable Plants and their Fibres as Building Materials: Proceedings of the Second International RILEM Symposium, Vol. 10, p. 9780203626818. Routledge, London, UK. DOI.
  7. Ngoulou, M., Elenga, R. G., Ahouet, L., Bouyila, S., & Konda, S. (2019)., Modeling the drying kinetics of earth bricks stabilized with cassava flour gel and amylopectin., Geomaterials, 9(01), 40.
  8. Mesbah, A., Morel, J. C., Walker, P., & Ghavami, K. (2004)., Development of a direct tensile test for compacted earth blocks reinforced with natural fibers., Journal of materials in Civil Engineering, 16(1), 95-98.
  9. Moussa, S. H., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., & Courard, L. (2019)., Comparative study of thermal comfort induced from masonry made of stabilized compressed earth block vs conventional cementitious material., Journal of Minerals and Materials Characterization and Engineering, 7(385-403).
  10. Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003)., New insulating particleboards from durian peel and coconut coir., Building and environment, 38(3), 435-441.
  11. Mekhermeche, A. (2012)., Contribution à l’étude des propriétés mécaniques et thermiques des briques en terre en vue de leur utilisation dans la restauration des Ksours sahariennes., Doctoral dissertation.
  12. Ntenga R. (2012)., L’anisotropie élastique de fibres végétales pour le renforcement de matériaux composites.,
  13. K. V. Maheshwari, A. K. Desai and C. H. Solanki (2011)., Performance of fiber reinforced clayey soil, Electron., J. Geotech. Eng., 16, 1067 -1082.
  14. Taallah, B., Guettala, A., & Kriker, A. (2014)., Effet de la teneur en fibres de palmier dattier et de la contrainte de compactage sur les propriétés des blocs de terre comprimée.,
  15. Sedan, D. (2007)., Study of physicochemical interactions at hemp fiber/cement interfaces: influence on the mechanical properties of the composite., Doctoral dissertation, Limoges.
  16. Baley, C. (2005)., Fibres naturelles de renfort pour matériaux composites., Ed. Techniques Ingénieur.
  17. Abessolo, D., Biwole, AB, Fokwa, D., Koungang, BMG, & Yebga, BN (2020)., Effects of bamboo fiber length and content on the physicomechanical and hygroscopic properties of compressed earth blocks (CEB) used in construction., Afrique Science , 16(4), 13-22.
  18. Risques Naturelles, B. P. (2020)., Caractérisation des blocs produits par addition des fibres de coco et des matériaux de construction à base de latérite-ciment., Afrique Science, 17(4), 170-184.