Application of organic complex compounds as drug
Author Affiliations
- 1Department of Chemistry, Agra College, Dr. Bhimrao University Agra, UP, India
- 2Department of Chemistry, Agra College, Dr. Bhimrao University Agra, UP, India
- 3Department of Chemistry, Agra College, Dr. Bhimrao University Agra, UP, India
Res. J. Recent Sci., Volume 13, Issue (3), Pages 28-33, July,2 (2024)
Abstract
Metal complexes have been widely used for applications in drugs for their special chemical properties. The therapeutic use of as medicine has been clear. Coordination compounds have power to interact and react with bio as possibly also the complex compounds that palladium and ruthenium or platinum are anti-cancer drugs. Some coordination compounds are antimicrobial. Few complexes are also show potential for disease like Malaria and Alzheimer's, a clear concept of mechanistic level of complex will help to develop new coordination compound in our study the role of metal coordination to work as medicine /Drug is explored.
References
- Uivarosi, V. (2013)., Metal Complexes of Quinolone Antibiotics and Their Applications: An Update Molecules., 18, 11153–11197.
- Chohan, Z. H., Shad, H. A., Youssoufi, M. H., & Hadda, Ben. T. (2010)., Some new biologically active metal-based sulfonamide., Europ. J. Medic. Chem., 45, 2893–2901.
- Psomas, G., Tarushi, A., Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., and Katsaros, N. (2006)., Synthesis, structure and biological activity of copper (II) complexes with oxolinic acid., J. Inorg. Biochemist., 100, 1764–1773.
- Efthimiadou, E. K., Katsarou, M. E., A. Karaliota, A., and G. Psomas, G. (2008)., Copper (II) complexes with sparfloxacin and nitrogen-donor heterocyclic ligands: Structure activity relationship., J. Inorg. Biochemist., 102, 910–920.
- Jurca, T. (2008)., Combinatii complexe ale metalelor tranzitionale cu substante medicamentoase., Oradea: Editura Universitatii din Oradea. 205.
- Marian, E. (2009)., Complecsi ai unor metale tranzitionale cu substante medicamentoase., Timişoara: Editura Politehnica. 189, ISBN: 978-973-625-876-3.
- Warra, A. A. (2011)., Transition metal complexes and their application in drugs and cosmetics., A Rev. J. Chem. Pharm. Res., 3(4), 951-958.
- Han Ang, W. and Dyson, P.J. (2006)., Classical and non-classical ruthenium-based anticancer drugs, towards targeted chemotherapy., Eur. J. Inorg. Chem., 4003–4018.
- Messori, L. and Merlino, A. (2016)., Cisplatin binding to proteins; a structural perspective., Coord. Chem. Rev., 315, 67–89.
- Nagy, P. and Winterbourn, C. C. (2010). Redox chemistry of biological thiols. In Advances in Molecular Toxicology. J . Chem. Fishbein. ed. Elsev., 183–222., undefined, undefined
- Boulikas, T. (2009)., Clinical overview on lipoplatin; a successful liposomal formulation of cisplatin., Expert Opin. Investig. Drugs., 18, 1197–1218.
- Okamoto, Y., Kojima, R., Schwizer, F., Bartolami, E., Heinisch, T., Matile, S., Fussenegger M. Fussenegger, and Ward, T. R. Ward. (2018)., A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell., Nat. Commun., 9, 1943.
- Orvig, C. and M. J. Abrams (1999)., Medicinal inorganic chemistry; introduction., Chem. Rev., 99(9), 2201–2204.
- Yaman, M., Kaya, G. and Yekeler, H. (2007)., Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues., Worl. J. Gastroenterol., 13(4), 612–618.
- Munnangi, S. R., Youssef, A. A. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023)., Drug complexes: Perspective from Academic Research and Pharmaceutical market., J. Spring. Sci. Revi., 40, 1519-1540. https://doi.org/10.1007/s11095-023-03517-w.
- i. Timerbaev, A. R., Hartinger, C. G., Aleksenko, S. S., Keppler, B. K. (2006)., Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology., Chem. Rev. 106, 6, 2224-48. ii. Ming, L. J. (2003).
- i. Brown, D. H., Lewis, A. J., Smith, W. E., Teape, J. W. (1980). Antiinflammatory effects of some copper complexes. J. Med. Chem. 23, 729-734. ii. Boucher, L. J. and Williams, D. R. (1971)., The Metals of Life. Van Nostrand Reinhold, London. Coordination Chemistry of Porphyrins. Coordination Chemistry of Macrocyclic Compound., 517-536.
- Ruiz, M., Perello, L., Ortiz, R., Castineiras, A. and Maichlemossmer, C. E., Canton. (1995)., J. Inorg. Biochem. 59, 4, 801-810., undefined
- Castillo-Blum, S. E., & Barba-Behrens, N. (2000)., Coordination chemistry of some biologically active ligands., Coordination Chemistry Reviews, 196(1), 3-30.
- Ogden, R. C., Flexner (Eds.), C. W., & Duncan, I.B., Redshaw, S. (2001)., Discovery and Early Development of Saquinavir., In Protease Inhibitors in AIDS Therapy eds. Marcel Dekker, Inc. New York, 27-47.
- Boyd, A. E. (1988)., Diabetic Ketoacidosis (DKA) and the hyperosmolar hyperglycemic state (HHS) are the two most serious acute metabolic complications of Diabetes., 37, 847-850.
- Thornber, C.W. (1979)., Isosterism and Molecular Modification in Drug Design., Chem. Soc. Rev., 8(4), 563-580. https://doi.org/10.1039/CS9790800563..
- Mandell, G. L., Petri, W. A., in: Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. W., Gilman (Eds.), A.G. (1966). Pharmacological Basis of Therapeutics, 9th Edition. McGraw-Hill, New York. pp. 1057-1072., undefined, undefined
- Maren, T. H., (1976)., Relatons between structure and biological activity of sulfonamides., Annu. Rev. Pharmacol. Toxicol. 16, 309-327.
- Domagk, G. (1935)., Discovery of the first Sulfa drug or sulfonamides and discovery of Prontosil published the first report in 1935., Deut. Med. Wochensch., 61, 250-253.
- Supuran, C.T., Scozzafava, A., A. and Mastrolorenzo, A. (2000)., Carbonic anhydrse and matrix metallo protienase inhibitors., J. Enzy. Inhibition and Med Chem. Exp. Opin. Therap. Pat., 111, 221-259.
- Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenzo, A., & Supuran, C. T. (2005)., Carbonic anhydrase inhibitors: inhibition of the transmembrane isozyme XIV with sulfonamides., Bioorganic & medicinal chemistry letters, 15(17), 3828-3833.
- Scozzafava, A., Briganti, F., Mincione, G., Menabuoni, L., Mincione, F., & Supuran, C. T. (1999)., Carbonic anhydrase inhibitors: synthesis of water-soluble, aminoacyl/dipeptidyl sulfonamides possessing long-lasting intraocular pressure-lowering properties via the topical route., Journal of medicinal chemistry, 42(18), 3690-3700.
- Owa, T., & Nagasu, T. (2000)., Novel sulphonamide derivatives for the treatment of cancer., Expert Opinion on Therapeutic Patents, 10(11), 1725-1740.
- Dasari, R. R., Haranath, C., and Abdul Ahad, H. (2022)., Complex Drug Delivery Systems., J. pharm. Sci. and Res., 13(4), 1533-1539.
- Mohammed, H. S., and Tripathi, V. D. (2020). Medicinal Applications of Coordination Complexes. 1st International Virtual Conference on Pure Science, University of Al-Qadisiyah, Iraq, 10th-11th June. J. Phys. Conf. Ser. 1664 012070, 1664., undefined, undefined
- Kean, W. F., Lock, C. J. L., and Lock- Howard, H. (19910)., Gold complex research in medical science. Difficulties with experimental design., Inflammo. Pharmacolog., 1, 103- 114.
- Chithra, k., Satheesh, D., Jayanathi, K., Kumar, S. V., Muthulakshmi, V., Kalaivani, K., Saravanan, R. and Sellam, P. (2021)., Cobalt (II) Complexes of (E)-2- (2-Hydroxy-3-methoxy benzalidene) Hydrazine carbon (thio) amides: Synthesis, FT-IR Studies and their antimicrobial activity., Chem. Data collect. Els. 32, 100652.
- Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., Kotowski, K. and Kulbacka, J. (2018)., Photodynamic therapy – mechanisms, photosensitizers and combinations., Biomed. & Pharmacotherapy., 106, 1098–1107.
- Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y., Peng, C. (2020)., Effectiveness of convalescent plasma therapy in severe COVID-19 patients., PNAS, 117, 9490–9496.
- Wiehe, A., O, Trends and targets in antiviral phototherapy., Photochem. & Photobiolog. Sci., 18, 2565-2612.
- Zhao, J., Meng, W., Miao, P., Yu, Z. & Li, G. (2008)., Photodynamic Effect of Hypericin on the Conformation and Catalytic Activity of Hemoglobin., Int. J. Mol. Sci., 9, 145–153.
- Costa, L., Faustino, M. A., Neves, M. G., Cunha, Â. and Almeida, A. (2012)., Photodynamic inactivation of mammalian viruses and bacteriophages., Viruses, 4, 1034-1074.
- Messori, L., Camarri, M., Ferraro, T., Gabbiani, C. & Franceschini, D. (2013)., Promising in Vitro anti-Alzheimer Properties for a Ruthenium (III) Complex., ACS Med. Chem. Lett., 4, 329–332.
- Boulguemh, I.-E., Beghidja, A., Khattabi, L., Long, J. & Beghidja, C. (2020)., Monomeric and dimeric copper (II) complexes based on bidentate N’-(propan-2-ylidene) thiophene carbohydrazide Schiff base ligand: Synthesis, structure, magnetic properties, antioxidant and anti- Alzheimer activities., Inorganica Chimica Acta., 507, 119519.
- Dong Y, Stewart T, Zhang Y, Shi M, Tan C, Li X, Yuan L, Mehrotra A, Zhang J and Yang X. (2019)., Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition., 62, 126–139.
- Kostova, I. (2006)., Platinum complexes as anticancer agents. Recent., Pat. Antican. Drug Discov., 1, 1–22.
- Sánchez-Delgado, R. A., Navarro, M., Pérez, H. & Urbina, J. A. (1996)., Toward a Novel Metal Based Chemotherapy against Tropical Diseases. 2. Synthesis and Antimalarial Activity in Vitro and in Vivo of New Ruthenium and Rhodium Chloroquine Complexes., J. Med. Chem., 39, 1095–1099.
- Navarro, M., Castro, W., Madamet, M. and Amalvict, R, Benoit N, and Pradines B. (2014)., Metalchloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action., Malaria. J., 13, 471.
- Leung, C. H., Lin, S., Zhonga, H. J. and Ma, D. L. (2014)., Metal complexes as potential modulators of inflammatory and autoimmune responses., Roy. Soc. Chem. Chem. Sci.
- Charles, A., Dinarello. (2010)., Anti-inflammatory Agents: Present and Future., Department of Medicine, University of Colorado, Aurora, CO 80045, USA 2Department of Medicine, Radboud University Nijmegen Medical Center, 6500 HC Nijmegen, the Netherlands, 140(6), 935–950.
- Lima, A. S., Alvim, H. G.O. (2018)., Review on non-steroid antiinflammatory: Acetylsalicylic acid., Rev. Inic. Ciente. Ext., 1, 169–174.
- Abate, C., Carnamucio, F., Giuffrè, O. and Foti, C. (2022)., Metal-Based Compounds in Antiviral Therapy., Biomolec. 12, 933. https://doi.org/10.3390/ biom12070933.
- De Paiva, R. E. F., Neto, A. M., Santos, I. A., Jardim, A. C. G., Corbi, P. P. and Bergamini, F. R. G. (2020)., What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks., Dalton Trans., 49, 16004–16033. https://doi.org/10.1039/D0DTO2478C.
- Ni, Y., Zeng, H., Song, X., Zheng, J., Wu, H., Liu, C. and Zhang, Y. (2022)., Potential metal-related strategies for prevention and treatment of COVID-19., Rare Met., 41(4), 1129–1141. https://doi.org/10.1007/s12598-021-01894-y.
- Budimir, A. (2011)., Metal ions, Alzheimer, Acta Pharmaceutica., 61(1), 1-14. https://doi.org/10.2478/v10007-011-0006-6.
- Flora, S. and Pachauri, V. (2010)., Chelation in Metal Intoxication., Int. J. Envion. Res. and Public. Health., 7(7), 2745-2788. https://doi.org/10.3390/ijerph7072745.
- Díaz, M. R. and Vivas-Mejia, P. E. (2013)., Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes., Pharmaceut (Basel)., 6(11), 1361–1380. https://doi.org./10.3390/ph6111361.
- Pattan, S. R., Pawar, S. B., Vetal, S. S., Gharate, U. D. and Bhawar, S. B. (2012)., The scope of metal complexes in drug design - A Review., Ind. Drugs., 49(11), 5–12. https://doi.org/10.53879/id.49.11.p0005.
- Chiang, L., Jones, M. R., Ferreira, C. L. and Storr, T. (2012)., Multifunctional ligands in medicinal inorganic chemistry–current trends and future directions., Curr. Top. Med. Chem., 12(3), 122–144. https://doi.org/10.2175/15680 2612799078973.