International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A Study on Characteristics of fish mucus and their Antifungal activity

Author Affiliations

  • 1Govt. V.Y.T.P.G. Autonomous College Durg, CG, India
  • 2Govt. V.Y.T.P.G. Autonomous College Durg, CG, India

Res. J. Recent Sci., Volume 12, Issue (3), Pages 21-27, October,2 (2023)


In their aquatic habitat, the fishes are simultaneously exposed to environments comprising various pathogenic micro-organisms, so that they need a constant mechanism to combat these pathogens and eliminate potential infections. The integumentary layer in fishes is exchange between them and the external environment protects the fish from pathogenic attacks. Recently, this mucus of the fishes has gained importance in the field of biomedical research, because of its ability to tackle infections caused by bacteria, viruses, and fungi, by providing innate immunity to the fishes. It is being studied for its potential applications in human medicine. This review is an outline of the active potency of fish integumentary mucus and its and effective role against several human pathogens and the treatment of their resulting clinical infections.


  1. Rajani, N., & Alka, M. (2015)., To study the Ethnomedicinal importance of food fish used by localite of Durg., IOSR J Environ Sci Toxicol Food Technol, 16, 38-40.
  2. Gupta, T., & Dey, M. (2017)., Ichthyotherapy: use of fishes as medicine by ethnic Karbi people of Assam, India., European Journal of Pharmaceutical and Medical Research, 4(10), 341-343.
  3. Subramanian, S., MacKinnon, S. L., and Ross, N. W. (2007)., A comparative study on innate immune parameters in the epidermal mucus of various fish species., Comparative biochemistry and physiology. Part B, Biochemistry and molecular biology, 148(3), 256–263.
  4. Cameron, A. M., and Endean, R. (1973)., Epidermal secretions and the evolution of venom glands in fishes., Toxicon, 11(5), 401-410.
  5. Dash, S., Das, S. K., Samal, J., and Thatoi, H. N. (2018)., Epidermal mucus, a major determinant in fish health: a review., Iranian journal of veterinary research, 19(2), 72–81.
  6. Gomez, D., Sunyer, J. O., and Salinas, I. (2013)., The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens., Fish and shellfish immunology, 35(6), 1729–1739.
  7. Austin, B., and McIntosh, D. (1988)., Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri Richardson., Journal of Fish Diseases, 11(3), 275-277.
  8. Shephard, K. L. (1994)., Functions for fish mucus., Reviews in Fish Biology and Fisheries, 4(4), 401-429.
  9. Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61(2), 75-85., undefined, undefined
  10. Shephard, K. L. (1993)., Mucus on the epidermis of fish and its influence on drug delivery., Advanced Drug Delivery Reviews, 11(3), 403-417.
  11. Zaccone, G., Kapoor, B., Fasulo, S., and Ainis, L. (2001)., Structural, histochemical, and functional aspects of the epidermis of fishes., Advances in Marine Biology, 253-348.
  12. Brinchmann, M. F. (2016)., Immune relevant molecules identified in the skin mucus of fish using -omics technologies., Molecular Bio. Systems, 12(7), 2056-2063.
  13. Ingram, G. A. (1980)., Substances involved in the natural resistance of fish to infection-A review., Journal of Fish Biology, 16(1), 23-60.
  14. Aranishi, F., Mano, N., and Hirose, H. (1998)., Fluorescence localization of epidermal cathepsins L and B in the Japanese eel., Fish Physiology and Biochemistry, 19, 205-209.
  15. Dash, S., Samal, J., and Thatoi, H. (2014)., A comparative study on innate immunity parameters in the epidermal mucus of Indian major carps., Aquaculture International, 22(2), 411-421.
  16. Al-Rasheed, A., Handool, K. O., Alhelli, A. M., Garba, B., Muhialdin, B. J., Masomian, M., Hani, H., and Daud, H. H. (2020)., Assessment of some immune components from the Bioactive crude extract derived from the epidermal mucus of climbing perch Anabas testudines., Turkish Journal of Fisheries and Aquatic Sciences, 20(10), 755-766.
  17. Aranishi, F., and Nakane, M. (1997)., Epidermal proteases of the Japanese eel., Fish Physiology and Biochemistry, 16, 471-478.
  18. Bhatnagar, A., and Rathi, P. (2021)., Fish skin mucus as a putative bio-resource for the development of next-generation antibiotics., Egyptian Journal of Aquatic Biology and Fisheries, 25(5), 1063-1091.
  19. Tsutsui, S., Okamoto, M., Ono, M., Suetake, H., Kikuchi, K., Nakamura, O., Suzuki, Y., and Watanabe, T. (2011)., A new type of lectin discovered in a fish, Flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein., Glycobiology, 21(12), 1580-1587.
  20. Cordero, H., Brinchmann, M.F., Cuesta, A., Meseguer, J., and Esteban, M.A. (2015)., Skin mucus proteome map of European sea bass (Dicentrarchuslabrax)., Proteomics. 15, 4007-4020.
  21. Tsutsui, S., Yamaguchi, M., Hirasawa, A., Nakamura, O., & Watanabe, T. (2009)., Common skate (Raja kenojei) secretes pentraxin into the cutaneous secretion: the first skin mucus lectin in cartilaginous fish., Journal of biochemistry, 146(2), 295-306.
  22. Huan, Y., Kong, Q., Mou, H., and Yi, H. (2020)., Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields., Frontiers in microbiology, 11, 582779.
  23. Valero, Y., Elena, CP., Jose, M., Maria, A.E., and Alberto, C. (2013)., Biological role of fish antimicrobial peptides. In: Seong, MD and Hak, YI (Eds.), Antimicrobial peptides. (1st Edition.), New York, USA., Nova Science Publishers Inc., 31-60.
  24. Shai, Y. (1994)., Pardaxin: channel formation by a shark repellant peptide from fish., Toxicology, 87, 109-129.
  25. Lee, S. A., Kim, Y. K., Lim, S. S., Zhu, W. L., Ko, H., Shin, S. Y., Hahm, K. S., and Kim, Y. (2007). Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry, 46(12), 3653–3663., undefined, undefined
  26. Sung, W. S., Lee, J., and Lee, D. G. (2008)., Fungicidal effect and the mode of action of piscidin2 derived from hybrid striped bass. Biochemical and biophysical research communications, 371(3), 551–555., undefined
  27. Das, S.K., Samal, J., and Dash, S. (2013). Antimicrobial activity of skin mucus of fishes: a review., In: Thatoi, HN and Mishra, BB (Eds.), Advances in biotechnology. (1st Edition.), USA, Studium Press. 491-506., undefined
  28. Park, C. H., Valore, E. V., Waring, A. J., and Ganz, T. (2001)., Hepcidin, a urinary antimicrobial peptide synthesized in the liver., Journal of Biological Chemistry, 276(11), 7806-7810.
  29. Wu, M., Maier, E., Benz, R., and Hancock, R. E. (1999)., Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli., Biochemistry, 38(22), 7235-7242.
  30. Lee-Huang, S., Huang, P. L., Sun, Y., Huang, P. L., Kung, H., Blithe, D. L., and Chen, H. (1999)., Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin., Proceedings of the National Academy of Sciences, 96(6), 2678-2681.
  31. Leon-Sicairos, N., Lopez-Soto, F., Reyes-Lopez, M., Godinez-Vargas, D., Ordaz-Pichardo, C., and De la Garza, M. (2006)., Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme., Clinical Medicine and Research, 4(2), 106-113.
  32. Guardiola, F. A., Cuesta, A., Arizcun, M., Meseguer, J., and Esteban, M. A. (2014)., Comparative skin mucus and serum humoral defense mechanisms in the teleost gilthead seabream (Sparus aurata)., Fish and Shellfish Immunology, 36(2), 545-551.
  33. Sridhar, A., Manikandan, D. B., Palaniyappan, S., Sekar, R. K., and Ramasamy, T. (2021)., Correlation between three freshwater fish skin mucus Antiproliferative effect and its elemental composition role in bacterial growth., Turkish Journal of Fisheries and Aquatic Sciences, 21(05), 233-244.
  34. Nauta, A. J., Daha, M. R., Kooten, C. V., and Roos, A. (2003)., Recognition and clearance of apoptotic cells: A role for complement and pentraxins., Trends in Immunology, 24(3), 148-154.
  35. Lund, V., and Olafsen, J. A. (1998)., A comparative study of pentraxin-like proteins in different fish species., Developmental and Comparative Immunology, 22(2), 185-194.
  36. Boshra, H., Li, J., and Sunyer, J. (2006)., Recent advances on the complement system of teleost fish., Fish and Shellfish Immunology, 20(2), 239-262.
  37. Magnadottir, B., Lange, S., Gudmundsdottir, S., Bogwald, J., and Dalmo, R. (2005)., Ontogeny of humoral immune parameters in fish., Fish and Shellfish Immunology, 19(5), 429-439.
  38. Shen, Y., Zhang, J., Xu, X., Fu, J., and Li, J. (2012)., Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp., Fish and Shellfish Immunology, 33(2), 448-454.
  39. Fan, C., Wang, J., Zhang, X., and Song, J. (2015)., Functional C1q is present in the skin mucus of Siberian sturgeon (Acipenser baerii)., Integrative Zoology, 10(1), 102-110.
  40. Hellio, C., Pons, A. M., Beaupoil, C., Bourgougnon, N., and Gal, Y. L. (2002)., Antibacterial, antifungal, and cytotoxic activities of extracts from the fish epidermis and epidermal mucus., International Journal of Antimicrobial Agents, 20(3), 214-219.
  41. Vennila, R., Kumar, K. R., Kanchana, S., Arumugam, M., Vijayalakshmi, S., and Balasubramaniam, T. (2011)., Preliminary investigation on the antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays., Asian Pacific Journal of Tropical Biomedicine, 1(2), S239-S243.
  42. Loganathan, K., Muniyan, M.K., Prakash, A.A., Raja, P.S., and Prakash, M.S. (2011)., Studies on the role of mucus from Clarias batrachus (Linn) against selected microbes., International Journal of Pharmaceutical Applications, 2(3) 2011, 202-206.
  43. Uthayakumar, V., Ramasubramanian, V., Senthilkumar, D., Priyadarisini, V. B., and Harikrishnan, R. (2012)., Biochemical characterization, antimicrobial and haemolytic studies on skin mucus of freshwater spiny eel Mastacembelus armatus., Asian Pacific Journal of Tropical Biomedicine, 2(2), S863-S869.
  44. Fuochi, V., Li Volti, G., Camiolo, G., Tiralongo, F., Giallongo, C., Distefano, A., Petronio Petronio, G., Barbagallo, I., Viola, M., Furneri, P., Di Rosa, M., Avola, R., and Tibullo, D. (2017)., Antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatispastinaca (Linnaeus, 1758)., Marine Drugs, 15(11), 342.
  45. Kumari, S., and Yadav, S. (2020)., Study of Antifungal Activity of Epidermal Mucus of Three Fresh Water Fishes., Annals of Biology, 36(1), 75-80.