Drude Formalism Study of The Giant Magnetoresistance in Fe(t)/Cu/Fe Trilayers
Author Affiliations
- 1Department of Physics, Nwafor Orizu College of Education, P.M.B. 1734, Onitsha, Anambra, NIGERIA
- 2 Department of Physics/Industrial Physics, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra, NIGERIA
Res. J. Recent Sci., Volume 1, Issue (11), Pages 56-58, November,2 (2012)
Abstract
The recently developed Drude-like model for resistivity in metallic multilayers is applied to Fe(t)/Cu(10A)/Fe(10A) trilayer systems. The basic GMR characteristics deduced conform qualitatively to reports communicated in literature. Our analyses show that the Fuchs-Sondheimer theory of thin film resistivity is not valid for layered structures and spin-dependent scattering in the bulk is the dominant mechanism for GMR in the investigated systems.
References
- Baibich M.N., Broto J.M., Fert A., Nguyen Van Dau F., Petroff F., Eitenne P., Creuzet G., Friederich A. and Chazelas J., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett61, 2472 - 2475 (1988)
- Binasch G., Grunberg P., Saurenbach F. and Zinn W., Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, 39, 4828 - 4830 (1989)
- Lu L., Lu G., Zhang Z., Gao C., Yu T. and Chen P., Giant magnetoresistance of Co/ITO multilayers, Solid State Commun.,149, 2254-2256 (2009)
- Papp G. and Borza S., Giant magnetoresistance in a two-dimensional electron gas modulated by periodically repeated magnetic barriers, Solid State Commun.,150, 2023 - 2027 (2010)
- Lu M-W. and Yang G-J., Magnetoresistance effect in a hybrid ferromagnetic/semiconductor nanostructure, Solid State Commun.,141, 248 - 251 (2007)
- Elsafi B., Trigui F. and Fakhfakh Z., Effects of bulk and interface scattering on giant magnetoresistance in the Co/Cu multilayer systems, Comput. Mater. Sci., 50(2), 800 - 804 (2010)
- Vedyayev A., Ryzhanova N. and Dieny B., Quantum effects in the giant magnetoresistance (GMR) of magnetic multilayers, Physica A, 241, 207 - 215 (1997)
- Oomi G., Sakai T., Uwatoko Y., Takanashi K. and Fujimori H., Magnetoresistance of magnetic multilayers at high pressure, Physica B,239, 19 - 28 (1997)
- Yu. T, Li X-Q., Li D-G., Hao S-F., Wang L-M., Zhang Z-G., Wu G.H., Zhang X.X., Li Q-L. and Chen P., Magnetic property and magnetoresistance in Fe/ITO multilayers, J. Magn. Magn. Mater., 320, 2185 - 2189 (2008)
- Lu L., Yang Y-X., Gao C., Xiong Y-Q. and Chen P., Temperature dependence of magnetoresistance in Co/ITO multilayers, J. Alloys. Comp., 492, 61 - 64 (2010)
- Uba I., Ekpunobi A.J. and Ekwo P.I., Magnetoresistance – temperature relationship: calculus of variation approach, J. Sci. and Arts,4(17), 509 - 512 (2011)
- Hood R.Q. and Falicov L.M., Boltzmann equation approach to the negative magnetoresistance of ferromagnetic – normal metal multilayers, Phys. Rev. B,46, 8287 - 8296 (1992)
- Barnas J., Fuss A., Camley R.E., Grunberg P. and Zinn W., Novel magnetoresistance effect in layered magnetic structures: Theory and experiment, Phys. Rev. B,42, 8110 - 8120 (1990)
- Camblong H.E. and Levy P.M., Novel results for quasiclassical linear transport in metallic multilayers, Phys. Rev. Lett., 69, 2835 - 2838 (1992)
- Barnas J and Bruynseraede Y., Electronic transport in ultrathin magnetic multilayers, Phys. Rev. B53, 5449 - 5460 (1996)
- Camblong H.E., Linear transport theory of magnetoconductance in metallic multilayers: A real – space approach, Phys. Rev. B,51, 1855 - 1865 (1995)
- The model and its derivation are part of still – in – progress doctorate work of U.J.I.
- Thanh N.T., Tu L.T., Ha N.D., Kim C.O., Kim C., Shin K.H. and Parvatheeswara Rao B., Thickness dependence of parallel and perpendicular anisotropic resistivity in Ta/NiFe/IrMn/Ta multilayer studied by anisotropic magnetoresistance and planar Hall effect, J. Appl. Phys.,101, 053702-1-5 (2007)
- Sondheimer E.H., The mean free path of electrons in metal, Adv. Phys.50(6), 466 - 537 (2001)
