International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Electrochemical Synthesis, Characterization and Evaluation of Antioxidant Activity of Copper Oxide Nanoparticles

Author Affiliations

  • 1P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India and Department of Chemistry, Dr. Babasaheb Ambedakar Marathwada University, Aurangabad, India
  • 2Department of Chemistry, Dr. Babasaheb Ambedakar Marathwada University, Aurangabad, India
  • 3P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India
  • 4P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India
  • 5P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India
  • 6P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India

Res.J.chem.sci., Volume 6, Issue (9), Pages 43-48, September,18 (2016)


In the present work, straw like copper oxide nanostructure were successfully prepared by electrochemical reduction method by applying constant current density. The tetraethylammonium bromide used as surfactant in an aqueous medium. The various parameter such as concentration of surfactant, current density, electrolysis time and separation distance between the electrodes were used for monitoring nanoparticles size and to prevent agglomeration. The characterization of synthesized nanoparticles was done by using analytical techniques like XRD, SEM, EDX, HRTEM and XPS. The synthesized CuO NPs were studied spectrophotometrically for their antioxidant potential using modified DPPH assay. These nanoparticles exhibited pronounced antioxidant activity.


  1. Saikia J.P., Paul S., Konwar B.K. and Samdarshi S.K. (2010)., Ultrasonication: Enhances the antioxidant activity of metal oxide nanoparticles., Colloids Surf. B: Biointerfaces, 79(2), 521-523. doi: 10.1016/j.colsurfb. 2010.04.022.
  2. Das D., Nath B.C., Phukon P. and Dolui S.K. (2013)., Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles., Colloids Surf B: Biointerfaces, 101, 430-433. doi: 10.1016/j.colsurfb. 2012.07.002
  3. Purkayastha D.D., Das N. and Bhattacharjee C.R. (2014)., Synthesis and antioxidant activity of cupric oxide nanoparticles accessed via low-temperature solid state thermal decomposition of bis(dimetylglyoximato)copper(II) complex., Mater. Lett., 123, 206-209. doi: 10.1016/j.matlet.2014.02.097
  4. Chen S.J., Chen X.T., Xue Z.L., Li L.H. and You X.Z. (2002)., Solvothermal preparation of Cu2O crystalline particles., J. Crys. Growth, 246(1-2), 169-175, doi: 10.1016/S0022-0248(02)01902-4.
  5. Tang X.L., Ren L., Sun L. N., Tian W.G., Cao M.H. and Hu C.W. (2006)., A Solvothermal Route to Cu2O Nanocubes and Cu Nanoparticles., Chem. Res. Chinese U., 22(5), 547-551, doi: 10.1016/S1005-9040(06)60159-1.
  6. Wang H., Xu J.Z., Zhu J.J. and Chen H.Y. (2002)., Preparation of CuO nanoparticles by microwave irradiation., J. Crys. Growth, 244(1), 88-94, doi: 10.1016/S0022-0248(02)01571-3.
  7. Wang Z.M. and Lin Y.S. (1998)., Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles., J. Catal., 174(1), 43-51, doi: 10.1006/jcat.1997.1913.
  8. Manmeet K., Muthea K.P., Despandeb S.K., Choudhury S., Singhd J.B., Verma N., Gupta S.K. and Yakhmi J.V. (2006)., Growth and branching of CuO nanowires by thermal oxidation of copper., J. Cry. Growth, 289(2), 670-675, doi: 10.1016/j.jcrysgro.2005.11.111.
  9. Chen Z.Z., Shi E.W., Zheng Y.Q., Li W.J., Xiao B. and Zhuang J.Y. (2003)., Growth of hex-pod-like Cu2O whisker under hydrothermal conditions., J. Crys. Growth, 249(1-2), 294-300, doi: 10.1016/S0022-0248(02)02154-1
  10. Yamukyan M.H., Manukyan K.V. and Kharatyan S.L. (2008)., Copper oxide reduction by combined reducers under the combustion mode., Chemical Engineering Journal, 137(3), 636-642, doi: 10.1016/j.cej.2007.05.033.
  11. Yu L., Zhang G., Wu X., Bai X. and Guo D. (2008)., Cupric oxide nanoflowers synthesized with a simple solution route and their field emission., J. Crys. Growth, 310(12), 3125-3130, doi: 10.1016/j.jcrysgro.2008.03.026.
  12. Zheng S.F., Hu J.S., Zhong L.S., Song W.G., Wan L.J. and Guo Y.G. (2008)., Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries., Chem. Mater., 20(11), 3617-3622, doi: 10.1021/cm7033855.
  13. Zhu J., Li D., Chen H., Yang X., Lu L. and Wang X. (2004)., Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method., Mater. Lett., 58(26), 3324-3327, doi: 10.1016/j.matlet.2004.06.0310.
  14. Rujun W., Zhenye M., Zhenggui G. and Yan Y. (2010)., Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC-water mixed solvent., J. Alloys and Compounds, 504(1), 45-49, doi: 10.1016/j.jallcom.2010.05.062.
  15. Xu X., Zhang M., Feng J. and Zhang M. (2008)., Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid., Mater. Lett., 62(17-18), 2787-2790, doi: 10.1016/j.matlet.2008.01.046.
  16. Liu Y., Chu Y., Li M., Li L. and Dong L. (2006)., In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process., J. Mater. Chem., 16,192-198. doi: 10.1039/B512481F.
  17. Vaseem M., Umar A., Hahn Y.B., Kim D.H., Lee K.S., Jang J.S. and Lee J.S. (2008)., Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies., Catalysis Commun., 10(1), 11-16, doi: 10.1016/j.catcom.2008.07.022.
  18. Volanti D.P., Keyson D., Cavalcante L.S., Simões A.Z., Joya M.R., Longo E., Varela J.A., Pizani P.S. and Souza A. G. (2008)., Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave., J. Alloys Compd., 459(1-2), 537-542, doi: 10.1016/j.jallcom.2007.05.023.
  19. Vaseem M., Umar A., Kim S.H., Al-Hajry A. and Hahn Y. B. (2008)., Growth and structural properties of CuO urchin-like and sheet-like structures prepared by simple solution process., Mater. Lett., 62(10-11), 1659-1662, doi: 10.1016/j.matlet.2007.09.054.
  20. Keyson D., Volanti D.P., Cavalcante L.S., Simões A.Z., Varela J.A. and Longo E. (2008)., CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method., Mater. Res. Bull., 43(3), 771-775, doi: 10.1016/j.materresbull.2007.03.019.
  21. Zhang H. and Zhang M. (2008)., Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors., Mater. Chem. Phys., 108(2-3), 184-187. doi: 10.1016/j.matchemphys.2007.10.005.
  22. Qu Y., Li X., Chen G., Zhang H. and Chen Y. (2008)., Synthesis of Cu2O nano-whiskers by a novel wet-chemical route., Mater. Lett., 62(6-7), 886-888, doi: 10.1016/j.matlet.2007.07.004.
  23. Yao W.T., Yu S.H., Zhou Y., Jiang J., Wu Q. S., Zhang L. and Jiang J. (2005)., Formation of Uniform CuO Nanorods by Spontaneous Aggregation:  Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process., J. Phys. Chem. B., 109(29), 14011-14016, doi: 10.1021/jp0517605.
  24. Su Y.K., Shen C.M., Yang H.T., Li H.L. and Gao H. (2007)., Controlled synthesis of highly ordered CuO nanowire arrays by template based sol-gel route., J. Trans. Nonferrous Met. Soc. China., 17(4), 783-786, doi: 10.1016/S1003-6326(07)60174-5.
  25. Chen J.T., Zhang F., Wang J., Zhang G.A., Miao B.B., Fan X.Y., Yan D. and Yan P.X. (2008)., CuO nanowires synthesized by thermal oxidation route., J. Alloys and Compds., 454(1-2), 268-273, doi: 10.1016/j.jallcom.2006.12.032.
  26. Zhu C.L., Chen C.N., Hao L.Y., Hu Y. and Chen Z.Y. (2004)., Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon., J. Cry. Growth, 263(1-4), 473-479.
  27. Gou X., Wang G., Yang J., Park J. and Wexler D. (2008)., Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons., J. Mater. Chem., 18,965-969, doi: 10.1039/B716745H.
  28. Azam A., Ahmed A.S., Oves M., Khan M.S. and Memic A. (2012)., Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and gram negative bacterial strains., Int J. Nanomedicine, 7, 3527-3535, doi: 10/2147/IJNs29020.
  29. Kim Y.S., Hwang I.S., Kim S.J., Lee C.Y. and Lee J.H. (2008)., CuO nanowire gas sensors for air quality control in automotive cabin., Sensors Actuators B., 135(1), 298-303, doi: 10.1016/j.snb.2008.08.026.
  30. Umar A., Rahman M.M., Al-Hajry A. and Hahn Y.B. (2009)., Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets., Electrochem. Commun., 11(2), 278-281, doi: 10.1016/j.elecom.2008.11.027.
  31. Jianliang C.Y., Tianyi W., Liu M.Y. and Zhongyong Y. (2011)., Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation., J. Nat. Gas Chem., 20(6), 669-676, doi: 10.1016/S1003-9953(10)60238-1.
  32. Yang S., Wang C., Chen L. and Chen S. (2010)., Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application., Mater. Chem. Phys., 120(2-3), 296-301, doi: 10.1016/j.matchemphys.2009.11.005.
  33. Yip S.K. and Sauls J.A. (1992)., Nonlinear Meissner effect in CuO superconductors., Phys. Rev. Lett., 69, 2264-2267. doi: 10.1103/PhysRevLett.69.2264.
  34. Bohr R.H., Chun S.Y., Dau C.W., Tan J.T. and Sung J. (2009)., Field emission studies of amorphous carbon deposited on copper nanowires grown by cathodic arc plasma deposition., New Carbon Mater., 24(2), 97-101, doi: 10.1016/S1872- 5805(08)60040-2.
  35. Reetz M.T. and Helbig W. (1994)., Size-Selective Synthesis of Nanostructured Transition Metal Clusters., J. Am. Chem. Soc., 116, 7401-7402, doi:10.1021 /ja00095a051.
  36. Serpen A., Capuano E., Fogliano V. and Gokmen V. (2007)., A New Procedure To Measure the Antioxidant Activity of Insoluble Food Component., J. Agric Food Chem., 55, 7676-7681, doi: 10.1021/jf071291z.
  37. Cullity B.D. (1978)., Elements of X-ray Powder Diffraction., Addison-Wesley, Publishing company New York, 350-368. ISBN: 0-201-01174-3.