Comparative Thermokinetics Study of Terpolymeric Resins derived from p-Hydroxyacetophenone, Resorcinol and Glycerol
Author Affiliations
- 1 Department of Chemistry, Institute of science, Nagpur, MS, INDIA
- 2 Department of Chemistry, Arts, Commerce and Science College, Arvi, Dist. Wardha, MS, INDIA V.N.I.T., Nagpur, MS, INDIA
Res.J.chem.sci., Volume 4, Issue (2), Pages 81-86, February,18 (2014)
Abstract
The terpolymeric resins abbreviated as PARG-I and PARG-II were synthesized by polyphosphoric acid (PPA) catalyzed polycondensation of p-hydroxyacetophenone, resorcinol and glycerol in 1:1:3 and 2:1:4 molar proportions respectively. The resins were characterized by various physico-chemical methods such as elemental analysis, IR, 1H NMR, UV-Vis and non-aqueous conduct metric titration. The thermokinetic parameters were determined using Freeman-Carroll and Sharp-Wentworth methods. The order of degradation was determined by FC method and confirmed by SW method.
References
- Lee K.E., Poh B.T., Morad N. and Teng T.T., Development, characterization and the Application of hybrid materials in coagulation/flocculation of waste water: A review, Int. J. Polym. Anal. Charact., 13, 95-107(2008)
- Kaushik A. and Singh P., Polyurethanes based on fatty acids with improved--, Int. J. Polym. Anal. Charact., 10, 373-386 (2005)
- Masram D.T., Kariya K.P. and Bhave N.S., Electrical conductivity study of resin synthesized from salicylic acid, butylenes diamine and formaldehyde, Arch. Appl. Sci. Res., 2(2), 153-161 (2012)
- Gurnule W.B., Rahandale P.K., Kharat R.B. and Paliwal L.J., Synthesis and characterization of copolymer derived from 2-hydroxyacetophenon, oxamide and formaldehyde, Prog. Crystal Growth Charct. Mater., 45, 155-160 (2002)
- Kushwaha A.D., Hiwase V.V., Kalambe A.B. and Kapse S.K., Semiconducting behavior and thermal study ofterpolymeric resin derived from p-nitrophenol, resorcinol and formaldehyde, Arch. Appl. Sci. Res., 4(3), 1502-1510 (2012)
- Masram D.T., Kariya K.P. and Bhave N.S., Thermal degradation study of salicylic acid, diaminonaphthalene and formaldehyde, E.J. Chem., 6(3), 830-834 (2009)
- Mathew D., Nair C.P.R., Ninan K.N., Pendent cyanate functional vinyl polymers and Imido-phenolic- triazines thereof: synthesis and thermal properties, Europe. Polym. J., 36(6), 1195-1208 (2000)
- Nakanishi K., Infrared absorption spectroscopy practical, Nolden Day and Nankod, Tokyo (1967)
- Michael P.S.P., Barbe J.M., Juneja H.D. and Paliwal L.J., Synthesis, characterization and Thermal degradation of 8-hydroxyquinoline-guanidine-formaldehyde terpolymer, Europe. Polym. J., 43(12), 995-5000 (2007)
- Singru R.N., Khati V.A., Gurnule W.B., Zade A.B. and Dontulwar J.R., Studies on semiconducting, chelating and thermal properties of p-cresol-oxamide-formaldehyde terpolymer resin, Anal. Bioanal. Electroche, 3(1), 67-86 (2011)
- Rahangdale S., Gurnule W. B., Synthesis, thermal and electrical properties of 2, 2’-HBBF copolymer resin, Chem. Sci. Trans., 2(1), 287-293 (2013)
- Freeman E.S. and Carroll B., The application of thermoanalytical techniques to reaction kinetics, The Thermogravimetry evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., 62, 394-397 (1958)
- Sharp J.B. and Wentworth S.A., Kinetic analysis of Thermogravimetry data, Anal. Chem., 41, 2060-206 (1969)
- Karunakaran M., Vijayakumar C.T., Magesh C., Amudha T., Terpolymer resin-II thermal and metal ion binding properties of resorcinol-thiourea-formaldehyde terpolymer resin, IJEST, 3(1), 162-176 (2011)
- Vogel A.I., Textbook of practical organic chem, Longman Scientific and Technical, UK (1989)
- Basavaraju B. and Naik H.S.B., Synthesis and thermal degradation kinetics of Co (II), Ni (II), Cd (II), Zn (II), Pd (II), Rh (III) and Ru (III) complexes with methylquinolino [3, 2- b] benzodiazepine, E. J. Chem., 4(2), 199-207 (2007)
- Belsare P.U. and Zade A.B., Synthesis and Thermogravimetry analysis of 2, 2’-Biphenol based terpolymer resins, Chem. Sci. Trans., 2(4), 1136-1147(2013)
- Silverstein R.M. and Webster F.X., Spectrometric identification of organic compounds, 6th Edn. John Wiley, New York, (1998)
- Ballamy L.J., the IR spectroscopy of complex molecules, John Wiley and Sons. Inc. 142 (1975)
- Morrison R.T. and Boyd R.N., “Organic Chemistry”, Prentice Hall 4-Pub, Co. Pvt. Ltd. 6. Wardlaw G.M. Hampl J.S., 7th Edn, (2007)
- Su W.F., Lee K.E. and Peng W.Y., Thermal properties of phthalic anhydride and phenolic resin-cured rigid rod epoxy resins, Thermochimica Acta., 395-398 392-393 (2002)
- Dharkar K.P., Khamborkar A.K. and Kalambe A.B., Thermal degradation analysis of melamine- anilineformaldehyde terpolymeric ligand, Res. J. Chem. Sci.,2(12), 11-16 (2012)
- Ozwa T.J., Temperature control modes in thermal analysis, Pure Appl. Chem., 72(11), 2083-2099 (2000)
- Ukey V.V., Juneja H.D., Borkar S.D., Ghubde R.S., Naz S., Preparation, Characterization, Magnetic, and Thermal Studies of some chelate Polymers of first series transition metal ions, Mater. Sci. Engg. B, 132, 34-38 (2006)
- Coats A.W., Critical investigation of methods for kinetics analysis of thermo analytical data, J. Thermal Anal., 601-617 (1975)
- Kapse S.K., Hiwase V.V., Kalambe A.B., Structural and thermokinetic study of resin-I derived from p- hydroxyacetophenone quinhydrone and melamine, Der Pharma Chemica, 4(1), 460-467 (2012)
- Tantry R.N., Janthi K., Harish M.N.K., Angadi S.A.R., Chinnagiri K.K.T., Synthesis and thermal degradation kinetics studies of Benzimidozole substituted metal phthalocyanine through oxadiazole bridge (M=Co, Ni, Cu), Res. J. Chem. Sci., 3(11), 36-46 (2013)
- G. Indira Devi, Sabu P.G., Parameshwaran G., Thermal decomposition kinetics and mechanism of Co(II), Ni(II) and Cu(II) complexes derived from anthracene carboxaldehyde L-Tyrosine, Res. J. Chem. Sci., 3(9), 58-63 (2013)
- Thavamani S.S., Rajkumar, Removal of Cr(II), Cu(II), Pb(II) and Ni(II) from aqueous solutions by adsorption on alumina, Res. J. Chem. Sci., 3(8), 44-48 (2013)