International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

What Makes a Good Weld in Terms of its Structure and Chemical Composition

Author Affiliations

  • 1Chemical Department, Taras Shevchenko National University of Kyiv, 01601 Kyiv, UKRAINE
  • 2The E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03680 Kyiv, UKRAINE

Res.J.chem.sci., Volume 4, Issue (12), Pages 86-92, December,18 (2014)

Abstract

The difference in the carbon concentration in a weld and in a base metal causes the divergence of crystal lattice parameters and generates stresses on the boundaries between the weld and the base metal. It has been shown, on the example of carbon steels, which are solid solutions with the structure of -Fe type, that it is possible to regulate the lattice parameter of the weld. This regulation has been performed by using the admixture of Al, Mn, and Ti metals that are supplied with a powder welding wire. The formula for the zero increment of the lattice parameter with respect to that of the α-Fe lattice of the solid solution, is proposed δa = 0.01763ai+ 0.01763ti+ 0.00494mn+ 0.00188Cc– 0.00619si– 0.00849Cp= 0.

References

  1. Sudnik W., Arc Welding, InTech, Rijeka, Croatia, 330 (2011)
  2. Hashmi M.S.J., Comprehensive materials processing, Welding and Bonding technologies, Vol. 6, Elsevier, Amsterdam (2014)
  3. Messler R.W., Jr. Principles of Welding, Processes, Physics, Chemistry, and Metallurgy, Wiley, N.Y., 685 (2008)
  4. Podgaetskii V. and Kuzmenko V., Welding Slags., A Handbook, Naukova Dumka,Kiev, 253 (1988)
  5. Deyev G.F., Surface Phenomena in Fusion Welding Processes, CRC press, Boca Raton, 424 (2006)
  6. Smithells C.J., Metals Reference Book, Elsevier, Amsterdam, 1582 (2013)
  7. Hume-Rothery W., Finniston H.M., Hopkins D.W. and Owen W.S., The Structures of Alloys of Iron: An Elementary Introduction, E-book, Elsevier, Amsterdam, 360 (2013)
  8. Barrett C.S. Structure of metals. Crystallographic Methods, Principles and Data, Horney Press, Alcester, 580 (2008)
  9. Rajagopalan M., Tschopp M.A. and Solanki K.N., Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron, JOM, 66(1), 129-138 (2014)
  10. Gorelik S.S., Skakov Yu.A. and Rastorguev L.I. X-ray and electron-optical analysis, A textbook for high school, Third edition (in Russian), Moscow Steel and Alloys Institute, Nauka, oscow, 360 (2002)
  11. Vainshtein B.K., Fridkin V.M. and Indenbom V.L., Structure of Crystals, Springer, Berlin, 520 (1994)
  12. Barabash O.M. and Koval Yu. N., Structure and properties of metals and alloys. Ser. Crystalline Structure of Metals and Alloys., Handbook, Naukova Dumka, iev, 600 (1986)
  13. Okamoto H., The C-Fe (Carbon-Iron) System, Journal of Phase Equilibria, 13(5), 543-565 (1992)
  14. Franke P. and Seifert H.J., Binary System C-Fe, Landolt-Börnstein - Group IV Physical Chemistry, Ternary Steel Systems: Phase Diagrams and Phase Transition Data, Vol. 19C1, Springer, Berlin-Heidelberg, 12 (2012)
  15. Ohtani H., Hanaya N., Hasebe M., Teraoka S. and Abe M., Thermodynamic Analysis of the Fe-Ti-P Ternary System by Incorporating First-Principles Calculations into the CALPHAD Approach, CALPHAD30, 147-158 (2006)
  16. Okamoto H., The Fe-P (Iron-Phosphorus) system, Bulletin of Alloy Phase Diagrams, 11(4), 404 (1990)
  17. Walder P. and Pelton A.D., Thermodynamic modeling of the Fe-S system, Journal of Phase Equilibria and Diffusion, 26(1), 23-38 (2005)
  18. Lyakishev N.P., PhaseDiagrams of Binary Metal Systems: Handbook, V. 2, Mashinostroenie, Moscow, 1025 (1977)
  19. Paton B.E., Biletskii S.M., Rybakov A.A., Zaitsev K.I., Mazel A.G. and Shmelev I.A., Welding of multilayer pipes in the manufacture and construction of high pressure gas pipelines, International Journal ofPressureVessels andPiping, 24, 175-187 (1986)
  20. Sokolsky V.E., Roik O.S., Davidenko A.O., Kazimirov V.P., Lisnyak V.V., Galinich V.I. and Goncharov I.A., The phase evolution at high-temperature treatment of the oxide-fluoride ceramic flux, Research journal of Chemical Sciences, 4(4), 71-77 (2014)
  21. Kraus W. and Nolze G., Powder cell : A program for the representation and manipulation of crystal structures and calculation of the resulting -ray powder patterns, Journal of Applied Crystallography, 29, 301-303 (1996)
  22. I.A.Institute for Materials Research and Testing (BAM), available online at:http://www.ccp14.ac.uk/ccp/webmirrors/powdcell/a_v/v_1/powder/e_cell.html, (10.01.2012), (2012)
  23. Mirkin L.I., Handbook of X-Ray Analysis of Polycrystalline Materials, Consultants Bureau, New York, 751 (1964)