International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A Density Functional Theory (DFT) Perspective on Organotin(IV)-Drug Interaction: Dimethyltin(IV) Derivative of Chlordiazepoxide

Author Affiliations

  • 1Chemistry Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi-221005, U.P., INDIA

Res.J.chem.sci., Volume 4, Issue (11), Pages 56-61, November,18 (2014)

Abstract

The density functional theory (DFT) based quantum-mechanical calculations have been performed on dimethyltin(IV) derivative of chlordiazepoxide using the Gaussian09 software package. The ground state optimization of the possible tetrahedral structure was achieved using B3LYP functional with 6-31G(d,p) basis set for all the atoms, except the tin(IV) atom which was described by LANL2DZ basis set along with the effective core potential. The harmonic vibrational frequencies were computed at the same level of theory to find the true potential energy surface (PES) minima. The charge distribution within the ligand and its dimethyltin(IV) derivative was calculated using Mulliken population analysis, Hirshfeld population analysis and natural population analysis. The conceptual-DFT based global reactivity descriptors such as, electronic chemical potential, electronegativity, chemical hardness, global softness and electrophilicity index for the complex have been obtained using the frontier molecular orbital analysis. The nature of O−Sn, C−Sn and N−O bond is discussed in terms of the natural bond orbital (NBO) analysis. The structural analysis in terms of the selected bond lengths and bond angles, and vibrational analysis of characteristic infrared vibrational frequencies of chlordiazepoxide and its studied dimethyltin(IV) derivative is carried out to obtain a theoretical explanation for its possible formation.

References

  1. Nath M., Pokharia S., Eng G., Song X. and Kumar A.,New triorganotin(IV) derivatives of dipeptides as anti-inflammatory-antimicrobial agents, Eur. J. Med. Chem., 40, 289-298 (2005)
  2. Ronconi L. and Sadler P.J., Using coordination chemistry to design new medicines, Coord. Chem. Rev., 251, 1633-1648 (2007)
  3. Nath M., Pokharia S., Song X., Eng G., Gielen M., Kemmer M., Biesemans M., Willem R. and deVos D., New organotin(IV) derivatives of dipeptides as models for metal-protein interaction: in vitro anti-tumour activity, Appl. Organometal. Chem., 17, 305-314 (2003)
  4. Alama A., Tasso B., Novelli F. and Sparatore F., Organometallic compounds in oncology: implications of novel organotin as antitumor agents, Drug Discov. Today, 14, 500-508 (2009)
  5. Carraher C., Sabir T., Roner M., Shahi K., Bleicher R., Roehr J. and Bassett K., Synthesis of organotin polyamine ethers containing acyclovir and their preliminary anticancer and antiviral activity, J. Inorg. Organomet. Polym. Mater., 16, 249-257 (2006)
  6. Dokorou V., Primikiri A. and Kovala-Demertzi D., The triphenyltin(IV) complexes of NSAIDs and derivatives. Synthesis, crystal structure and antiproliferative activity. Potent anticancer agents, J. Inorg. Biochem., 105, 195-201 (2011)
  7. El-Gamel N.E.A., The interactions of metal ions with nonsteroidal anti-inflammatory drugs (oxicams), J. Coord. Chem., 62, 2239-2260 (2009)
  8. Kovala-Demertzi D., Dokorou V., Primikiri A., Vargas R., Silvestru C., Russo U. and Demertzis M.A., Organotin meclofenamic complexes: synthesis, crystal structures and antiproliferative activity of the first complexes of meclofenamic acid-novel anti-tuberculosis agents, J. Inorg. Biochem., 103, 738-744 (2009)
  9. Dhir K., Kaur H., Puri J.K. and Mittu B., Synthesis, characterization and biological activity of diorgano and triorganotin(IV) complexes of Chlordiazepoxide, Choline theophyllinate and Phenobarbitone sodium, J. Organomet. Chem., 755, 101-109 (2014)
  10. Naseh M., Sedaghat T., Tarassoli A. and Shakerzadeh E., DFT studies of ONO Schiff bases, their anions and diorganotin(IV) complexes: Tautomerism, NBO and AIM analysis, Comput. Theor. Chem., 1005, 53-57 (2013)
  11. Latrous L., Tortajada J., Haldys V., Léon E., Correia C. and Salpin J.-Y., Gas-phase interactions of organotin compounds with glycine, J. Mass Spectrom., 48, 795-806 (2013)
  12. Sirikci G., Ancn N., zta S.G., Yeniehirli G. and zta N.A., Synthesis, spectral, theoretical studies and in vitro antimicrobial activities of novel diphenyltin(IV) complexes of Schiff bases derived from phenacylamine, Appl. Organometal. Chem., 28, 537-544 (2014)
  13. Matczak P., Theoretical investigation of the NSn coordination in (MeSnCN), Struct. Chem. (2014)(doi: 10.1007/s11224-014-0485-4)
  14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, J.A.Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J. and Fox D.J., Gaussian09, Revision B.01, Gaussian, Inc., Wallingford CT (2010)
  15. Becke A.D., Density functional thermochemistry.III. The role of exact exchange, J. Chem. Phys., 98, 5648-5652 (1993)
  16. Lee C., Yang W. and Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785-789 (1988)
  17. Hay P.J. and Wadt W.R., Ab initio effective core potentials for molecular calculations-potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 82, 299-310 (1985)
  18. Petersson G.A. and Al-Laham M.A., A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms, J. Chem. Phys., 94, 6081-6090 (1991)
  19. Geerlings P., De Proft F. and Langenaeker W., Conceptual Density Functional Theory, Chem. Rev., 103, 1793-1873 (2003)
  20. Roy R.K. and Saha S., Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors, Annu. Rep. Prog. Chem., Sect. C, 106, 118-162 (2010)
  21. Glendening E.D., Reed A.E., Carpenter J.E. and Weinhold F., NBO Version 3.1.
  22. Berger G., Using conceptual density functional theory to rationalize regioselectivity: A case study on the nucleophilic ring-opening of activated aziridines,Comput. Theor. Chem., 1010, 11-18 (2013)
  23. Nath M., Singh H., Eng G. and Song X., New di- and triorganotin(IV) derivatives of tyrosinylphenylalanine as models for metal-protein interactions: Synthesis and structural characterization. Crystal structure of MeSn(Tyr-Phe).MeOH, J. Organomet. Chem., 693, 2541-2550 (2008)
  24. Nath M., Singh H., Kumar P., Kumar A., Song X. and Eng G., Organotin(IV) tryptophanylglycinates: potential non-steroidal anti-inflammatory agents; crystal structure of dibutyltin(IV)tryptophanylglycinate, Appl. Organometal. Chem., 23, 347-358 (2009)