International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis of Bio-Active Guanidines by using Dioxane- Dibromide (Ddb) Under Ultrasound conditions

Author Affiliations

  • 1 Chemistry department, College of Natural Science, P.O.Box 378, Jimma University, Jimma, ETHIOPIA

Res.J.chem.sci., Volume 4, Issue (10), Pages 48-53, October,18 (2014)

Abstract

Over the decades guanidine and its derivatives have gained wide applications in organic synthesis, in the field of immunology andorgano electronics. In this paper, we highlight the facile conversion of 1,3-disubstituted thioureas to symmetric and non-symmetric guanidine derivatives by using dioxane-dibromide (DDB) as an oxidant with various amines under ultrasound conditions. The guanidines were obtained with quantitative yield, less reaction time, we also described further elaboration of this method for the synthesis of protected guanidine derivatives. All synthesized guanidines were tested for their invitro antimicrobial activity against Staphylococcus aureus, Staphylococcus albus, Klebsiella pneumonia Salmonella typhiand antifungal activity against Candida albicans, Aspergillusclavatusduring 48 h incubation period.

References

  1. Greenhill J.V. and Lue P., Amidines and guanidines in medicinal chemistry, Prog. Med. Chem.,(30), 203-326 (1993)
  2. Faulkner J. D., Marine natural products, Nat. Prod. Rep.,16, 155-198 (1999)
  3. Berlinck R.G.S., Silva A. E. and Santos M.F.C., The chemistry and biology of organic guanidine derivatives, Nat. Prod. Rep.,29(12), 1382-1406 (2012)
  4. Shubina E., Freund M., Schenker S., Clark T. and Tsogoeva S., Synthesis and evaluation of new guanidine-thiourea organocatalyst for the nitro-Michael reaction: Theoretical studies on mechanism and enantioselectivity, Beilstein J. Org. Chem., 1485-1498(2012)
  5. Abhilash N.T., Pharmaceuticals in Environment: A review on its effect, Res.J.Chem.Sci.,2(1), 103-105 (2012)
  6. Ramadas K. and Janarthanan N., A Short and Concise Synthesis of Guanidines, Synlett, (9), 1053-1054 (1997)
  7. Geihe E.I., Cooley C., Simon J.R., Kaspar R., Hedrick J.L. and Wender P.A., Designed guanidinium-rich amphipathic oligocarbonate molecular transporters complex, deliver and release siRNA in cells, PNAS, 109 (33) E2192,13171–13176 (2012)
  8. Meurling L., Marquez M., Nilson S. and Holmberg A., Polymer-conjugated guanidine is a potentially useful anti-tumor agent, Int. J. of Oncol., 35(2), 281-285 (2009)
  9. Brozozowski Z. and Saczewski F., Synthesis of novel 3-amino-2-(4-chloro-2-mercaptobenzenesulfonyl)-guanidine derivatives as potential antitumor agents, Eur.J of Med.Chem.,42(9), 1218-1225 (2007)
  10. Saranya A. V., Ravi S. and Venkatachalapathi S., In-Vitro Antioxidant activity of Diethyl malonate adducts of Phenothiazine, Res.J.Chem.Sci., 3(1), 82-85, (2013)
  11. Echavarren A., Galan A., Lehn J. and Mendoza J., Chiral recognition of aromatic carboxylate anions by an optically active abiotic receptor containing a rigid guanidinium binding subunit, J.Am.Chem.Soc.,111(13), 4994- 4995 (1989)
  12. Simoni D., Invidiata P., Ferroni R., Lampronti I. and Pollini G. P.,Facile synthesis of 2-nitroalkanols by tetramethylguanidine (TMG)-catalyzed addition of primary nitroalkanes to aldehydes and alicyclic ketones, Tetrahedron Lett., 38(15), 2749-2752 (1997)
  13. Isobe T., Fukuda K. and Ishikawa T., Modified Guanidines as Potential Chiral Superbases. 1. Preparation of 1,3-Disubstituted 2-Iminoimidazolidines and the Related Guanidines through Chloroamidine Derivatives, J. Org. Chem., 65(23), 7770-7773 (2000)
  14. Isobe T., Fukuda K., Tokunaga T., Seki H., Yamaguchi K. and Ishikawa T.,Modified Guanidines as Potential Chiral Superbases. 2. Preparation of 1,3-Unsubstituted and 1-Substituted 2-Iminoimidazolidine Derivatives and a Related Guanidine by the 2-Chloro-1,3-dimethylimidazolinium Chloride-Induced Cyclization of Thioureas, J. Org. Chem.,65(23), 7774-7778 (2000)
  15. Isobe T., Fukuda K., Yamaguchi K., Seki H., Tokunaga T. and Ishikawa T., Modified Guanidines as Potential Chiral Superbases. 3. Preparation of 1,4,6-Triazabicyclooctene Systems and 1,4-Disubstituted 2-Iminoimidazolidines by the 2-Chloro-1,3-dimethylimidazolinium Chloride-Induced Cyclization of Guanidines with a Hydroxyethyl Substituent, J. Org. Chem.,65(23), 7779-7785 (2000)
  16. Ryoda A., Yajima N., Haga T., Kumamoto T., Nakanishi W., Kawahata M., Yamaguchi K. and Ishikawa T., Optical Resolution of (±)-1,2-Bis(2-methylphenyl)ethylene-1,2-diamine as a Chiral Framework for 2-Iminoimidazolidine with 2-Methylphenyl Pendant and the Guanidine-Catalyzed Asymmetric Michael Reaction of tert-Butyl Diphenyliminoacetate and Ethyl Acrylate, J. Org. Chem., 73(1), 133-141 (2008)
  17. Saito N., Ryoda A., Nakanishi W. and Ishikawa T.,Guanidine-Catalyzed Asymmetric Synthesis of 2,2-Disubstituted Chromane Skeletons by Intramolecular Oxa-Michael Addition, Eur. J. Org. Chem., (16), 2759-2766 (2008)
  18. Zhang G., Kumamoto T. and Ishikawa T., Access to the nicotine system by application of a guanidine-catalyzed asymmetric Michael addition of diphenyliminoacetate with 3-pyridyl vinyl ketone, Tetrahedron Lett., 51(30), 3927-3930 (2010)
  19. Thai K. and Gravel M., Design, synthesis and application of chiral electron-poor guanidines as hydrogen-bonding catalysts for the Michael reaction, Tetrahedron: Asym., 21 (6), 751-755 (2010)
  20. Isobe T., Fukuda K., Araki Y. and Ishikawa T., Modified guanidines as chiral superbases: the first example of asymmetric silylation of secondary alcohols, Chem. Commun.,(3), 243-244 (2001)
  21. Tang Y., Li X., Lian C., Zhu J. and Deng J., Synthesis of a water-soluble cationic chiral diamine ligand bearing a diguanidinium and application in asymmetric transfer hydrogenation, Tetrahedron: Asym., 22(14), 1530-1535 (2011)
  22. Arndt H.D. and Koert U., Organic Synthesis Highlights IV,241–250 (2000)
  23. Kalia J. and Swartz K. J., Elucidating the molecular basis of action of a classic drug: Guanidine compounds as inhibitors of voltage-gated potassium channels, Mol. Pharmacol., 80(6), 1085-1095 (2011)
  24. Berlinck R.G.S. and Kossuga M.H., Natural guanidine derivatives, Nat. Prod. Rep., 22(4), 516-550 (2005)
  25. Berlinck R.G.S., Burtoloso A.C.B. and Kossuga M.H., The chemistry and biology of organic guanidine derivatives, Nat. Prod. Rep., 25(5), 919-954 (2008)
  26. Ishikawa T., Guanidine Chemistry, Chem. Pharm. Bull.(Tokyo), 58(12), 1555-1564 (2010)
  27. Cruz A., Martinez I. P. and Baez E. V. G.,A Synthetic Method to Access Symmetric and Non-Symmetric 2-(, N'-disubstituted) guanidinebenzothiazoles, Molecules, 17 (9), 10178-10191 (2012)
  28. Venkatesan J. and Ganesh K., Computational applied synthesis of guanidine in Ultrasound using QAP, Int. J. of Rec. Sci. Res., (IJRSR), 3(4), 249-252 (2012)
  29. Mason T. and Peters S., Practical Sonochemistry: Power Ultrasound Uses and Applications, 2nd Edition, Horwood Publishing, ISBN: 978-1-898563-83-9 (2003)
  30. Almahy H.A., Ali M.A. and Ali A.A., Extraction of Carotenoids as Natural dyes from the Daucuscarota Linn using Ultrasound in Kingdom of Saudi Arabia, Res. J. Chem. Sci.,3(1), 63-66 (2013)
  31. Chaudhuri S. K., Roy S. and Bhar S., Beilstein J. Org. Chem., 8, 323-329 (2012)
  32. Sweta D. D. and Arvind M. G., Design, Synthesis, Characterization and Biological evaluation of various N-substituted Piperazineannuoated s-Triazine derivatives, Res.J.Chem.Sci.,4(5), 14-19(2014)
  33. Bhanat K., Parashar B. and Sharma V. K., Microwave induced synthesis and Antimicrobial activities of various substituted Pyrazolidines from Chalcones, Res. J. Chem. Sci., 4(2), 68-74(2014)