12th International Science Congress (ISC-2024) on 8th and 9th December 2024.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Synthesis and Biological Activities of Selected Quinolone-Metal Complexes

Author Affiliations

  • 1Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Delhi – 110 042, INDIA
  • 2 Department of Chemistry, University of Delhi, Delhi-110007, INDIA

Res.J.chem.sci., Volume 3, Issue (6), Pages 83-94, June,18 (2013)

Abstract

4-Quinolones are the synthetic antibacterial agent structurally related to nalidixic acid. The coordination chemistry of these drugs with metal ions of biological and pharmaceutical importance is an active research area. In this review article, synthesis and biological activity of metal complexes of selected 4-quinolones such as norfloxacin, ciprofloxacin, enrofloxacin, gatifloxacin, and sparfloxacin are presented and discussed.

References

  1. Chu D.T.W. and Fernandes P.B.,Recent developments of the field of quinolone antibacterial agents, In Advances in Drug Research. Test, 21, 42–144 (1991)
  2. Crumplin G.C. and Smith J.T., Nalidix Acid: An antibacterial paradox, Antimicrob Agents Chemother., 8(3), 251-261 (1975)
  3. Boteva A.A. and Krasnykh O.P., The methods of synthesis, modification and biological activity of 4-quinolones, Chem. Heterocycl. Compds., 45(7), 757-785 (2009)
  4. Akinvemi C.A., Obaleye J.A., Amolegbe S.A., Adediji J.F. and Bamigboye M.O., Biological activities of some fluoroqinolones-metal complexes, Int J. Med. Biomed. Res., 1(1), 24-34 (2012)
  5. Turel I., The interactions of metal ions with quinolone antibacterial agents, Coordin. Chem. Rev., 232 27-47 (2002)
  6. Chu D.T.W. and Fernandes P.B. in: B. Testa (Ed.), Advances in Drug Research, vol. 21, London, Academic Press, pp. 39-144 (1991)
  7. Reynolds J.E.F. (Ed.), Martindale, The Extra Pharmacopeia, 30th ed., The Pharmaceutical Press, London, pp. 145-147 (1993)
  8. Xia Y., Yang Z.-Y., Morris-Natschke S.L. and Lee K.-H., Recent Advances in the Discovery and Development of Quinolones and Analogs as Antitumor Agents, Curr. Med. Chem., 179-194 (1999)
  9. Nakano M., Yamamoto M., and Arita T., Interactions of aluminum, magnesium, and calcium ions with nalidixic acid, Chem. Pharm. Bull., 26(5), 1505–1510 (1978)
  10. Kawai Y.K. and Matsubayashi H., Synergistic effect of ofloxacin and magnesium deficiency on joint cartilage in immature rats, Chem. Pharm. Bull., 44, 1425–1430 (1996)
  11. Ma H.H., Chiu F.C. and Li R.C., Mechanistic investigation of the reduction in antimicrobial activity of ciprofloxacin by metal cations, Pharm. Res., 14, 366–370 (1997)
  12. Yu H.T., Hurley L.H. and Kerwin S.M., Evidence for the Formation of 2:2 Drug-Mg2+ dimers in solution and for the formation of dimeric drug complexes on DNA from the DNA-Accelerated photochemical reaction of antineoplastic quinobenzoxazines, J. Am. Chem. Soc., 118, 7040-7048 (1996)
  13. Son G.S., Yeo J.-A., Kim, M.-S., Kim S.K., Holmén A., Åkerman B. and Nordén B., Binding mode of Norfloxacin to Calf Thymus DNA, J. Am. Chem. Soc., 120, 6451-6457 (1998)
  14. Efthimiadou E.K., Psomas G., Sanakis Y., Katsaros N. and Karaliota A., Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin: Synthesis, structure and bioactivity, J. Inorg. Biochem. 101, 525-535 (2007)
  15. Polk R.E., Drug-drug interaction with ciprofloxacin and other fluoroquinolones, Am. J. Med., 87(5A), 76S-81S (1989)
  16. Shaikh A.R., Giridhar R. and Yadav M.R., Bismuth-norfloxacin complex: Synthesis, physicochemical and antimicrobial evaluation, Int. J. Pharm332, 24–30 (2007)
  17. Upadhyay S.K., Kumar, P. and Arora V., Complexes of quinolone drugs norfloxacin and ciprofloxacin with alkaline earth metal perchlorates, J. Str. Chem., 47, 1078-1083 (2006)
  18. Li Y.-X., Chen Z.-F., Xiong R.-G., Xue Z., Ju H.-X. and You X.-Z., A mononuclear complex of norfloxacin with silver(I) and its properties, Inorg. Chem. Commun., 819–822 (2003)
  19. Refat M.S., Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB): Spectroscopic, thermal, kinetic measurements and biological activity, Spectrochim. Acta (Part A), 68 1393–1405 (2007)
  20. Efthimiadou E.K., Thomadaki H., Sanakis Y., Raptopoulou C.P., Katsaros N., Scorilas A., Karaliota A. and Psomas G., Structure and biological properties of the copper(II) complex with the quinolone antibacterial drug N-propyl-norfloxacinand 2,2’ bipyridine, J. Inorg. Biochem.101, 64–73 (2007)
  21. Efthimiadou E.K., Katsaros N., Karaliota A. and Psomas G., Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: Synthesis, characterization, biological activity and interaction with DNA, Inorg. Chim. Acta, 360 4093–4102 (2007)
  22. Efthimiadou E.K., Psomas G; Sanakis Y., Katsaros N. and Karaliota A., Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin: Synthesis, structure and bioactivity, J. Inorg. Biochem., 101525–535 (2007)
  23. Drusano G.L., Standiford H.C., Plaisance K., Forrest A., Leslie J.and Caldwell J.G.L., Absolute oral bioavailability of ciprofloxacin, Antimicro.b Agents Chemother.30(3), 444–446 (1986)
  24. Turel I., Golobic A., Klavzar A., Pihlar B., Buglyo P., Tolis E., Rehder D. and Sepcic K., Interactions of oxovanadium(IV) and the quinolone family member-ciprofloxacin, J. Inorg. Biochem.95, 199-207 (2003)
  25. Vieira L.M.M., Vieira de Almeida M., Avelino de Abreu H., Duarte H.A., Grazul R.M. and Fontes, A.P.S., Platinum (II) complexes with fluoroquinolones: Synthesis and characterization of unusual metal–piperazine chelates, Inorg. Chim. Acta, 362, 2060-2064 (2009)
  26. Anacona J.R. and Toledo C., Synthesis and antibacterial activity of metal complexes of ciprofloxacin, Tran. Metal Chem.26, 228-231 (2001)
  27. Psomas G., Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties, J. Inorg. Biochem.102, 1798–1811 (2008)
  28. Jimenez-Garrido N., Canton E., Liu-Gonzalez M., Garca-Granda S. and Perez-Priede M., Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin, J. Inorg. Biochem., 99, 677–689 (2005)
  29. Psomas G., Tarushi A. and Efthimiadou E.K., Synthesis, characterization and DNA-binding of the mononuclear dioxouranium(VI) complex with ciprofloxacin, Polyhedron27 133–138 (2008)
  30. Chen Z.-F., Yu L.-C., Zhong D.-C., Liang H., Zhu X.-H. and Zhou Z.-Y., An unprecedented 1D ladder-like silver(I) coordination polymer with ciprofloxacin, Inorg. Chem. Commun., 839–843 (2006)
  31. e Souza M.J., Bittencourt C.F. and Morsch L.M., LC determination of enrofloxacin,J. Pharm. Biomed. Anal., 281195-1199 (2002)
  32. Plumb D.C., Enrofloxacin, Veterinary Drug Handbook, Seventh edition (2011)
  33. Ftouni H., Sayen S., Boudesocque S., Dechamps-Olivier I. and Guillon E., Structural study of the copper(II)–enrofloxacin metallo-antibiotic, Inorg. Chim. Acta, 382, 186–190 (2012)
  34. Dessus-Babus S., Bebear C.M., Charron A., Bebear C. and de Barbeyrac B., Sequencing of Gyrase and Topoisomerase IV Quinolone-Resistance-Determining Regions of Chlamydia trachomatis and Characterization of Quinolone-Resistant Mutants Obtained In Vitro, Antimicrob. Agents Chemother., 42(10), 2474-2481 (1998)
  35. Ameyama S., Shinmura Y. and Takahata M., Inhibitory Activities of Quinolones against DNA Gyrase of Chlamydia pneumonia, Antimicrob. Agents Chemother., 47(7), 2327-2329 (2003)
  36. 36.FDA statement on withdrawal of Baytril for use in poultry. Available from:
  37. Efthimiadou E.K., Karaliota A. and Psomas G., Mononuclear dioxomolybdenum(VI) complexes with the quinolonesenrofloxacin and sparfloxacin: Synthesis, structure, antibacterial activity and interaction with DNA,Polyhedron, 27 349–356 (2008)
  38. Efthimiadou E.K., Katsaros N., Karaliota A. and Psomasa G., Synthesis, characterization, antibacterial activity, and interactionwith DNA of the vanadyl-enrofloxacin complex, Bioorg. Med. Chem. Lett., 17, 1238–1242 (2007)
  39. Skyrianou K.C., Psycharis V., Raptopoulou C.P., Kessissoglou D.P. and Psomas G., Nickel–quinolones interaction. Part 4 — Structure and biological evaluation ofnickel(II)–enrofloxacin complexes compared to zinc(II) analogues, J. Inorg. Biochem.105, 63–74 (2011)
  40. Efthimiadou E.K., Karaliota A. and Psomas G., Mononuclear metal complexes of the second-generation quinolone antibacterial agent enrofloxacin: Synthesis, structure, antibacterial activity and interaction with DNA, Polyhedron27, 1729–1738 (2008)
  41. Saravolatz L.D.and Leggett J., Gatifloxacin, Gemifloxacin, and Moxifloxacin: The role of 3 newer fluoroquinolones, Clin. Infect. Dis., 37(9)1210-1215 (2003)
  42. Sultana N., Naz A., Khan B., Arayne M.S. and Mesaik M.A., Synthesis, characterization, antibacterial, antifungal, and immunomodulating activities of gatifloxacin derivatives, Med. Chem. Res., 19, 1210–1221 (2010)
  43. Vieira L.M.M., de Almeida M.V., Lourenço M.C.S., Bezerra F.A.F.M. and Fontes A.P.S., Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones, Eur. J. Med. Chem., 44, 4107–4111 (2009)
  44. Sadeek S.A. and El-Shwiniy W.H., Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation, J. Mol. Str., 977, 243–253 (2010)
  45. Sultana N., Naz A., Arayne, S.M. and Mesaik M.A., Synthesis, characterization, antibacterial, antifungal and immune modulating activities of gatifloxacin–metal complexes, J. Mol. Str., 969, 17–24 (2010)
  46. Li Z.-Q., Wu F.-J., Gong Y., Hu C.-W., Zhang Y.-H. and Gan M.-Y., Synthesis, characterization and activity against Staphylococcus of Metal(II)-Gatifloxacin complexes, Chin. J. Chem. 25(12), 1809–1814 (2007)
  47. King D.E., Malone R. and Lilley S.H., New cClassification and update on the quinolone antibiotics, Am. Fam. Physician,61(9), 2741-2748 (2000)
  48. Sparoxacin, in: J.K. Aronson (Ed.), Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions, Elsevier, pp. 3172–3174 (2006)
  49. Schentag J.J., Sparfloxacin: A review, Clin. Ther., 22(4), 372-387 (2000)
  50. Skyrianou K.C., Raptopoulou C.P., Psycharis V., Kessissoglou D.P. and Psomas G., Structure, cyclic voltammetry and DNA-binding properties of the bis(pyridine)bis(sparfloxacinato)nickel(II) complex, Polyhedron 28 3265-3271 (2009)
  51. Efthimiadou E.K., Karaliota A. and Psomas G., Metal complexes of the third-generation quinolone antimicrobial drug sparfloxacin: Structure and biological evaluation, J. Inorg. Biochem.104, 455–466 (2010)
  52. Sultana N., Arayne M.S., Gul S. and Shamim S., Sparfloxacin–metal complexes as antifungal agents – Their synthesis, characterization and antimicrobial activities, J. Mol. Str., 975, 285–291 (2010)
  53. Efthimiadou E.K., Sanakis Y., Raptopoulou C.P., Karaliota A., Katsarosa N. and Psomasa G., Crystal structure, spectroscopic, and biological study of the copper(II) complex with third-generation quinoloneantibiotic sparfloxacin, Bioorg. Med. Chem. Lett., 16, 3864–3867 (2006)
  54. Efthimiadou E.K., Katsarou M.E., Karaliota A. and Psomas G., Copper(II) complexes with sparfloxacin and nitrogen-donor heterocyclic ligands: Structure–activity relationship, J. Inorg. Biochem., 102, 910–920 (2008)
  55. Skyrianou K.C., Efthimiadou E.K., Psycharis V., Terzis A., Kessissoglou D.P. and Psomas G., Nickel–quinolones interaction. Part 1 – Nickel (II) complexes with theantibacterial drug sparfloxacin: Structure and biological properties, J. Inorg. Biochem.103, 1617–1625 (2009)