Sustainable plant-based antimicrobial agents for textiles application: A Review
Author Affiliations
- 1Department of Textile Chemistry, Faculty of Technology and Engineering, Kalabhavan, The Maharaja Sayajirao University of Baroda, Vadodara – 390 001, Gujarat, India
- 2Department of Textile Chemistry, Faculty of Technology and Engineering, Kalabhavan, The Maharaja Sayajirao University of Baroda, Vadodara – 390 001, Gujarat, India
Res.J.chem.sci., Volume 15, Issue (1), Pages 39-49, February,18 (2025)
Abstract
The textile industry is formidably striving to progress towards ecologically and sustainability. This has instigated the research to find an alternative solution for the extensive use of synthetic chemicals in textile wet processing and for cleaner production. Public awareness of infectious and viral diseases has created a requirement for sustainable antimicrobial material. Synthetic antimicrobial agents have intensive use for textile applications but this approach has various environmental concerns. The need for sustainable and ecological antimicrobial textiles has stimulated research in the medical textile field for a promising solution. The current review paper comprises various potent plant-based biomaterials for textile applications as antimicrobial agents and colorants. The antimicrobial activity of plant extracts on textiles is been reviewed in detail. As a future prospect, a few ethnomedicinal Indian plants have been critically reviewed to understand their mechanism and effectiveness in textile application.
References
- Patel, B. H. (2011)., Natural dyes. In Handbook of textile and industrial dyeing (pp. 395-424)., Woodhead Publishing.
- Akca, C. (2020)., Antimicrobial Finishing., Waste in textile and leather sectors, 21.
- Patel, B., & Kanade, P. (2019)., Sustainable dyeing and printing with natural colours vis-à-vis preparation of hygienic viscose rayon fabric., Sustainable Materials and Technologies, 22, e00116.
- Shanmugavasan, A., & Ramachandran, T. (2014)., Investigation of extraction processes and phytochemical compositions of various plant extracts to develop curative medical bandages (Doctoral dissertation, Anna University).,
- Patel, B. H., & Tandel, M. G. (2005)., Antimicrobial finishing for textiles: An overview., Asian Dyer, 31-36.
- Timmis, K., & Brüssow, H. (2020)., The COVID‐19 pandemic: some lessons learned about crisis preparedness and management, and the need for international benchmarking to reduce deficits., Environmental microbiology, 22(6), 1986-1996.
- Rosenberg, M., Ilić, K., Juganson, K., Ivask, A., Ahonen, M., Vrček, I. V., & Kahru, A. (2019)., Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports., PeerJ, 7, e6315.
- Uddin, F. (2014)., Environmental concerns in antimicrobial finishing of textiles., International Journal of Textile Science, 3(1A), 15-20.
- Shahid, M., & Mohammad, F. (2013)., Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review., Industrial & Engineering Chemistry Research, 52(15), 5245-5260.
- Tawiah, B., Badoe, W., & Fu, S. (2016)., Advances in the development of antimicrobial agents for textiles: The quest for natural products. Review., Fibres & Textiles in Eastern Europe, 3(117), 136-149.
- Alapati, P., & Sulthana, S. (2015)., Phytochemical screening of 20 plant sources for textiles finishing., International Journal of Advanced Research, 3(10), 1391-1398.
- Dhawan, B. N. (2012)., Anti-viral activity of Indian plants., Proceedings of the national academy of sciences, India Section B: Biological Sciences, 82, 209-224.
- Hipler, U. C., & Elsner, P. (Eds.). (2006)., Biofunctional textiles and the skin (Vol. 33)., Karger Medical and Scientific Publishers.
- Vardanyan, R., & Hruby, V. (2006)., Synthesis of essential drugs., Elsevier.
- Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011)., Silver nanoparticles as potential antiviral agents., Molecules, 16(10), 8894-8918.
- Bisen, P. S., Debnath, M., & Prasad, G. B. K. S. (2012)., Human and microbial world., Microbes: concepts and applications, 1st edn. Wiley, Hoboken, 1-64.
- Patel, B. H., & Patel, P. B. (2006)., Dyeing of polyurethane fibre with Ocimum sanctum.,
- Patel, B. H., Desai, K. U., & Jha, P. K. (2014)., Azadirachta indica mediated bioactive lyocell yarn: Chemical and colour characterization., Advances in Chemistry, 2014(1), 259171.
- Shalini, G., & Anitha, D. (2016)., A review: antimicrobial property of textiles., Int J Sci Res, 5(10), 766-768.
- Patel, B., Mandot, A. A., & Jha, P. K. (2014)., Extraction, characterization and application of Azadirachta indica leaves for development of hygienic lycra filament., J. Int. Acad. Res. Multidiscip, 1, 65-84.
- Agarwal, B. J., & Patel, B. H. (2000)., The reincarnation of natural colourants-A review., Chemical Weekly-Bombay-, 45(38), 139-148.
- Iyigundogdu, Z. U., Demir, O., Asutay, A. B., & Sahin, F. (2017)., Developing novel antimicrobial and antiviral textile products., Applied biochemistry and biotechnology, 181, 1155-1166.
- Bano, N., Ahmed, A., Tanveer, M., Khan, G. M., & Ansari, M. T. (2017)., Pharmacological evaluation of Ocimum sanctum., J Bioequiv Availab, 9(3), 387-92.
- Saharkhiz, M. J., Kamyab, A. A., Kazerani, N. K., Zomorodian, K., Pakshir, K., & Rahimi, M. J. (2014)., Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages., Jundishapur journal of microbiology, 8(1), e13720.
- Pattanayak, P., Behera, P., Das, D., & Panda, S. K. (2010)., Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview., Pharmacognosy reviews, 4(7), 95.
- Ijaz, M., Maqsood, M., & Naveed, M. (2020)., Evaluation of antimicrobial activity of Ocimum tenuiflorum leaves on mechanical behavior of fabrics., Pure and Applied Biology (PAB), 9(1), 538-544.
- Chandrasekaran, K., & Senthilkumar, M. (2019)., Synergic antibacterial effect of Curcuma aromatica Salisb and Ocimumtenuiflorum Linn herbal extract combinations on treated cotton knitted fabrics against selective bacterial strains., Indian Journal of Fibre & Textile Research (IJFTR), 44(3), 344-351.
- Chandrasekaran, K., Ramachandran, T., & Vigneswaran, C. (2012)., Effect of medicinal herb extracts treated garments on selected diseases.,
- Rajendran, R., Radhai, R., Kotresh, T. M., & Csiszar, E. (2013)., Development of antimicrobial cotton fabrics using herb loaded nanoparticles., Carbohydrate polymers, 91(2), 613-617.
- Zaghloul, S., El-shafie, A., El-bisi, M., & Refaie, R. (2017)., Herbal Textile Finishes–Natural Antibacterial Finishes for Cotton Fabric., Egyptian Journal of Chemistry, 60(2), 161-180.
- Ashraf, R. H., Rahman, M., & Rahman, M. (2021)., Comparative study on antimicrobial activity of four Bangladeshi medicinal plants used as antimicrobial finishes on cotton fabric., Journal of Textile Science & Fashion Technology, 8(3), 6.
- Jayati, B. A., Kumar, A., Goel, A., Gupta, S., & Rahal, A. (2013)., In vitro antiviral potential of Ocimum sanctum leaves extract against New Castle Disease Virus of poultry., International Journal of Microbiology and Immunology Research, 2(7), 51-55.
- Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014)., A review on antibacterial, antiviral, and antifungal activity of curcumin., BioMed research international, 2014(1), 186864.
- Nisar, T., Iqbal, M., Raza, A., Safdar, M., Iftikhar, F., & Waheed, M. (2015)., Turmeric: A promising spice for phytochemical and antimicrobial activities., Am.-Eurasian J. Agric. Environ. Sci, 15, 1278-1288.
- Mathew, D., & Hsu, W. L. (2018)., Antiviral potential of curcumin., Journal of functional foods, 40, 692-699.
- Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020)., Antibacterial mechanism of curcumin: a review., Chemistry & Biodiversity, 17(8), e2000171.
- Mirjalili, M., & Abbasipour, M. (2013)., Comparison between antibacterial activity of some natural dyes and silver nanoparticles., Journal of Nanostructure in Chemistry, 3, 1-3.
- Chairman, K., Jayamala, M., Christy, V., & Singh, R. A. J. A. (2015)., Phytochemical screening and antimicrobial activity of Curcuma longa natural dye., General Medicine, 3(2), 304-312.
- Sudha, S., & Yamuna, V. (2013)., Development of anti-microbial textiles using microencapsulated honey and turmeric., International Journal of Pharmacy & Life Sciences, 4(8).
- Radha, M. H., & Laxmipriya, N. P. (2015)., Evaluation of biological properties and clinical effectiveness of Aloeávera: áAásystematic review., Journal of traditional and complementary medicine, 5(1), 21-26.
- Kahramanoğlu, İ., Chen, C., Chen, J., & Wan, C. (2019)., Chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera gel., Agronomy, 9(12), 831.
- Surjushe, A., Vasani, R., & Saple, D. (2008)., Aloe vera: a short review., Indian journal of dermatology, 53(4), 163-166.
- Kamble, K. M., Chimkod, V. B., & Patil, C. S. (2013)., Antimicrobial Activity of Aloe Vera Leaf Extract.,
- Arunkumar, S., & Muthuselvam, M. (2009)., Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens., World journal of agricultural sciences, 5(5), 572-576.
- Stanley, M. C., Ifeanyi, O. E., & Eziokwu, O. G. (2014)., Antimicrobial effects of Aloe vera on some human pathogens., International Journal of Current Microbiology and Applied Sciences, 3(3), 1022-1028.
- Khan, A. F. (2012)., Extraction, stabilization and application of antimicrobial agents from Aloe Vera., Pakistan Textile Journal, 61(4).
- Hein, N. T., Hnin, S. S., & Htay, D. H. (2013)., A study on the effect of antimicrobial agent from aloe vera gel on bleached cotton fabric., International Journal of Emerging Technology and Advanced Engineering, 4(2), 7-11.
- Jothi, D. (2009)., Experimental study on antimicrobial activity of cotton fabric treated with aloe gel extract from Aloe vera plant for controlling the Staphylococcus aureus (bacterium)., African Journal of Microbiology Research, 3(5), 228-232.
- Khurshid, M. F., Ayyoob, M., Asad, M., & Shah, S. N. H. (2015)., Assessment of eco-friendly natural antimicrobial textile finish extracted from aloe vera and neem plants., Fibres & Textiles in Eastern Europe, (6 (114), 120-123.
- Selvi, B. T., Rajendren, R., Nithyalakshmi, B., & Gayathirignaneswari, S. (2011)., Antimicrobial activity of cotton fabric treated with Aloevera extract., Int. J. Appl. Environ. Sci, 6, 127-131.
- Cheng, S. Y., Yuen, C. W. M., Kan, C. W., Cheuk, K. K. L., & Tang, J. C. O. (2010)., Systematic characterization of cosmetic textiles. Textile Research Journal, 80(6), 524-536., undefined
- Krishnaveni, V., & Aparna, B. (2014)., Microencapsulation of copper enriched Aloe gel curative garment for atopic dermatitis.,
- Islas, J. F., Acosta, E., Zuca, G., Delgado-Gallegos, J. L., Moreno-Treviño, M. G., Escalante, B., & Moreno-Cuevas, J. E. (2020)., An overview of Neem (Azadirachta indica) and its potential impact on health., Journal of functional foods, 74, 104171.
- Hossain, M. A., Al-Toubi, W. A., Weli, A. M., Al-Riyami, Q. A., & Al-Sabahi, J. N. (2013)., Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem., Journal of Taibah University for Science, 7(4), 181-188.
- Bukhari, H., Heba, M., & Khadijah, Q. (2014)., Eco-friendly dyeing textiles with neem herb for multifunctional fabrics. Part 1: extraction standardization., Int. J. Tech. Res. App, 2, 51-55.
- Joshi, M., Ali, S. W., & Rajendran, S. (2007)., Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): a natural bioactive agent., Journal of Applied Polymer Science, 106(2), 793-800.
- Abd El Aty, A. A., El-Bassyouni, G. T., Abdel-Zaher, N. A., & Guirguis, O. W. (2018)., Experimental study on antimicrobial activity of silk fabric treated with natural dye extract from neem (Azadirachta indica) leaves., Fibers and Polymers, 19, 1880-1886.
- Raja Ratna Reddy, Y., Krishna Kumari, C., Lokanatha, O., Mamatha, S., & Damodar Reddy, C. (2020)., Antimicrobial activity of Azadirachta Indica (neem) leaf, bark and seed extracts.,
- Jahan, N., & Arju, S. N. (2022)., A sustainable approach to study on antimicrobial and mosquito repellency properties of silk fabric dyed with neem (Azadirachta indica) leaves extractions., Sustainability, 14(22), 15071.
- Inprasit, T., Motina, K., Pisitsak, P., & Chitichotpanya, P. (2018)., Dyeability and antibacterial finishing of hemp fabric using natural bioactive neem extract.3 Fibers and polymers, 19, 2121-2126., undefined
- Ahmed, H. A., Rajendran, R., & Balakumar, C. (2012). 3Nanoherbal coating of cotton fabric to enhance antimicrobial durability., Elixir Appl Chem, 45, 7840-7843., undefined
- Lim, T. K., & Lim, T. K. (2016)., Glycyrrhiza glabra., Edible Medicinal and Non-Medicinal Plants: Volume 10, Modified Stems, Roots, Bulbs, 354-457.
- Nitalikar, M. M., Munde, K. C., Dhore, B. V., & Shikalgar, S. N. (2010)., Studies of antibacterial activities of Glycyrrhiza glabra root extract., Int J Pharm Tech Res, 2(1), 899-901.
- Krishnaveni, K. (2017)., Effect of imparting antimicrobial coating on organic cotton fabric using yashtimadhu for medical application., J Textile Eng Fashion Technol, 3(3), 650-2.
- YILMAZ, F. (2020)., Application of Glycyrrhiza glabra L. root as a natural antibacterial agent in finishing of textile., Industrial Crops and Products, 157, 112899.
- Krishnaveni, V. (2013)., Combined antimicrobial and coolant finishing treatment for cotton using yashtimadhu (Glycyrrhiza glabra L.) roots extract.,
- Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008)., Antiviral effects of Glycyrrhiza species., Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22(2), 141-148.
- Saha, S., & Ghosh, S. (2012)., Tinospora cordifolia: One plant, many roles., Ancient science of life, 31(4), 151-159.
- Upadhyay, R. K., Tripathi, R., & Ahmad, S. (2011)., Antimicrobial activity of two Indian medicinal plants Tinospora cordifolia (Family: Menispermaceae) and Cassia fistula (Family: Caesalpinaceae) against human pathogenic bacteria., J. of Pharma. Res, 4(1), 167-170.
- Sagar, V., & Kumar, A. H. (2020)., Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase.,
- Mittal, J., Sharma, M. M., & Batra, A. (2014). Tinospora cordifolia: a multipurpose medicinal plant-A. Journal of Medicinal Plants, 2(2), 33., undefined, undefined
- Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014)., Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology., Asian Pacific journal of tropical disease, 4(3), 213-222.
- Roy, S., Rao, K., Bhuvaneswari, C. H., Giri, A., & Mangamoori, L. N. (2010)., Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity., World Journal of Microbiology and Biotechnology, 26, 85-91.
- Pongtuluran, O. B., & Rofaani, E. (2015)., Antiviral and immunostimulant activities of Andrographis paniculata., HAYATI Journal of Biosciences, 22(2), 67-72.
- Gupta, S., Mishra, K. P., & Ganju, L. (2017)., Broad-spectrum antiviral properties of andrographolide., Archives of virology, 162(3), 611-623.
- Singha, P. K., Roy, S., & Dey, S. (2003)., Antimicrobial activity of Andrographis paniculata., Fitoterapia, 74(7-8), 692-694.
- Das, P., & Srivastav, A. K. (2014)., Phytochemical extraction and characterization of the leaves of Andrographis paniculata for its anti-bacterial, anti-oxidant, anti-pyretic and anti-diabetic activity., Int. J. innov. res. sci. eng. technol, 3, 15176-15184.
- Pandey, J., Saini, V. K., & Raja, W. (2019)., Evaluation of phytochemical analysis of Andrographis paniculata leaf and stem extract., World Journal of Pharmaceutical and Life Sciences, 5(2), 188-190.
- Wen, L., Xia, N., Chen, X., Li, Y., Hong, Y., Liu, Y., & Wang, Z. (2014)., Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt., European Journal of Pharmacology, 740, 421-427.
- Alam, F., Khan, G. N., & Asad, M. H. H. B. (2018)., Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review., Phytotherapy Research, 32(4), 597-615.
- Khushboo, P. S., Jadhav, V. M., Kadam, V. J., & Sathe, N. S. (2010)., Psoralea corylifolia Linn.—“Kushtanashini”., Pharmacognosy reviews, 4(7), 69.
- Uikey, S. K., Yadav, A. S., Sharma, A. K., Rai, A. K., Raghuwanshi, D. K., & Badkhane, Y. (2010)., The botany, chemistry, pharmacological and therapeutic application of psoralea corylifolia L.–A review., Int J Phytomed, 2(2), 100-107.
- Jayapriya, S., & Bagyalakshmi, G. (2013)., Textile antimicrobial testing and standards., International Journal of Textile and Fashion Technology, 4(1), 2250-2378.
- Song, X., Padrão, J., Ribeiro, A. I. F., & Zille, A. (2021)., Testing, characterisation and regulations of antimicrobial textiles.,
- Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014)., A review on antibacterial, antiviral, and antifungal activity of curcumin., BioMed research international, 2014(1), 186864.