International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

DFT Assisted Design, Generation and Spectroscopic Characterization of Hybrid Dicyclopentadienyltitanium (IV) Formulations

Author Affiliations

  • 1Department of Chemistry, University of Rajasthan, Jaipur-302004, India
  • 2Department of Chemistry, University of Rajasthan, Jaipur-302004, India
  • 3Department of Chemistry, University of Rajasthan, Jaipur-302004, India

Res.J.chem.sci., Volume 14, Issue (3), Pages 25-32, October,18 (2024)

Abstract

New hybrid dicyclopentadienyltitanium(IV) complexes having the formulas Cp2TiL1L’ and Cp2TiL2L’were generated by the reactions of titanocene(IV) dichloride with sterically hindered pyrazolones [LH, where R= -CH2CH3(L1H), p-ClC6H4-(L2H)] and phenoxyacetic acid (L’H, C6H5OCH2-COOH) in the presence of triethylamine in a 1:1:1:2 molar ratio in refluxing dry THF. The structural characteristics of newly synthesized hybrid titanocene(IV)complexes were determined using analytical methods, mass spectrometry, and spectroscopic (IR, 1H and 13C NMR) techniques. On the basis of obtained evidences a hexa coordinated geometry around the titanium centre has been suggested for newly generated hybrid dicyclopentadienyltitanium(IV) complexes. DFT calculations were performed to study the electronic properties and optimized geometries of the newly prepared hybrid dicyclopentadienyltitanium(IV) formulations.

References

  1. Schmidt, A., Heinrich, B., Kirscher, G., Chaumont, A., Henry, M., Kyritsakas, N., ... & Mobian, P. (2020)., Dipyrrolyldiketonato Titanium (IV) Complexes from Monomeric to Multinuclear Architectures: Synthesis, Stability, and Liquid-Crystal Properties., Inorganic Chemistry, 59(17), 12802-12816.
  2. Macyk, W., Szaciłowski, K., Stochel, G., Buchalska, M., Kuncewicz, J., & Łabuz, P. (2010)., Titanium (IV) complexes as direct TiO2 photosensitizers., Coordination Chemistry Reviews, 254(21-22), 2687-2701.
  3. Banerjee, P., Pandey, O. P., & Sengupta, S. K. (2008)., Microwave assisted synthesis, spectroscopic and antibacterial studies of titanocene chelates of Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1, 2, 4-triazoles., Transition metal chemistry, 33, 1047-1052.
  4. Sharma, K., Saxena, S., Jain, A. (2021)., Certain New Dicyclopentadienyl Titanium Complexes Derived from Sterically Impeded Heterocyclic Beta-Diketones and Beta-Diketones: Generation, Spectroscopic Characterization and Structure- Antimicrobial Activity Relationship., Res. J. Chem. Sci., 11(3), 6-13.
  5. Sharma, S., Kumar, P., Jain, A., & Saxena, S. (2018)., Synergy Between DFT Calculations and Experimental Studies on the Optimized Structures and the Antibacterial Potential of Some Novel Tetra‐and Penta Coordinated Organic‐Inorganic Hybrid Complexes of Titanium (IV)., Applied Organometallic Chemistry, 32(6), e4321.
  6. Rodríguez, I., Fernández-Vega, L., Maser-Figueroa, A. N., Sang, B., González-Pagán, P., & Tinoco, A. D. (2022)., Exploring titanium (IV) complexes as potential antimicrobial compounds., Antibiotics, 11(2), 158.
  7. Kaushal, R., Thakur, A., Bhatia, A., Arora, S., & Nehra, K. (2020)., Synthesis, characterization, DNA-binding and biological studies of novel titanium (IV) complexes., Journal of Chemical Sciences, 132, 1-17.
  8. Uddin, M. N., Khandaker, S., Amin, M. S., Shumi, W., Rahman, M. A., & Rahman, S. M. (2018)., Synthesis, characterization, molecular modeling, antioxidant and microbial properties of some Titanium (IV) complexes of schiff bases.3 Journal of Molecular Structure, 1166, 79-90., undefined
  9. Kumar, N., Kaushal, R., Chaudhary, A., Arora, S., & Awasthi, P. (2014)., Synthesis, structural elucidation, and in vitro antiproliferative activities of mixed-ligand titanium complexes., Medicinal Chemistry Research, 23, 3897-3906.
  10. Zhao, T., Wang, P., Zhang, X., Liu, N., Zhao, W., Zhang, Y., ... & Huhn, T. (2023)., Anti-tumoral titanium (IV) complexes stabilized with phenolato ligands and structure-activity relationship., Current Topics in Medicinal Chemistry, 23(19), 1835-1849.
  11. Manne, R., Miller, M., Duthie, A., da Silva, M. F. C. G., Tshuva, E. Y., & Baul, T. S. B. (2019)., Cytotoxic homoleptic Ti (IV) compounds of ONO-type ligands: synthesis, structures and anti-cancer activity., Dalton Transactions, 48(1), 304-314.
  12. Thanigachalam, S., & Pathak, M. (2024)., Bioactive O^ N^ O^ Schiff base appended homoleptic titanium (iv) complexes: DFT, BSA/CT-DNA interactions, molecular docking and antitumor activity against HeLa and A549 cell lines., RSC advances, 14(19), 13062-13082.
  13. Guk, D. A., Gibadullina, K. R., Burlutskiy, R. O., Pavlov, K. G., Moiseeva, A. A., Tafeenko, V. A., ... & Beloglazkina, E. K. (2023)., New Titanocene (IV) Dicarboxylates with Potential Cytotoxicity: Synthesis, Structure, Stability and Electrochemistry., International Journal of Molecular Sciences, 24(4), 3340.
  14. Manßen, M., & Schafer, L. L. (2020)., Titanium catalysis for the synthesis of fine chemicals–development and trends., Chemical Society Reviews, 49(19), 6947-6994.
  15. Sun, Z., Unruean, P., Aoki, H., Kitiyanan, B., & Nomura, K. (2020)., Phenoxide-modified half-Titanocenes supported on star-shaped ROMP polymers as catalyst precursors for ethylene copolymerization, . Organometallics, 39(16), 2998-3009.
  16. Tang, X. Y., Liu, J. Y., & Li, Y. S. (2013)., Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-) Polymerization., Catalysts, 3(1), 261-275.
  17. Zhao, R., Liu, T., Wang, L., & Ma, H. (2014)., High temperature ethylene polymerization catalyzed by titanium (iv) complexes with tetradentate aminophenolate ligands in cis-O, N, N chelating mode.3 Dalton Transactions, 43(33), 12663-12677., undefined
  18. Thanigachalam, S., & Pathak, M. (2023)., Development of nano titania/polyvinylidene fluoride composite from new titanium (IV) derivative and its investigation on antibacterial, BSA interaction and cytotoxicity., Materials Today Communications, 35, 105774.
  19. Kaluđerović, G. N., Pérez-Quintanilla, D., Sierra, I., Prashar, S., del Hierro, I., Žižak, Ž., ... & Gómez-Ruiz, S. (2010)., Study of the influence of the metal complex on the cytotoxic activity of titanocene-functionalized mesoporous materials., Journal of Materials Chemistry, 20(4), 806-814.
  20. Tacke, M., Allen, L. T., Cuffe, L., Gallagher, W. M., Lou, Y., Mendoza, O., ... & Sweeney, N. (2004)., Novel titanocene anti-cancer drugs derived from fulvenes and titanium dichloride., Journal of Organometallic Chemistry, 689(13), 2242-2249.
  21. Causey, P. W., Baird, M. C., & Cole, S. P. (2004)., Synthesis, characterization, and assessment of cytotoxic properties of a series of titanocene dichloride derivatives., Organometallics, 23(19), 4486-4494.
  22. Ceballos-Torres, J., Gómez-Ruiz, S., Kaluđerović, G. N., Fajardo, M., Paschke, R., & Prashar, S. (2012)., Naphthyl-substituted titanocene dichloride complexes: Synthesis, characterization and in vitro studies., Journal of Organometallic Chemistry, 700, 188-193.
  23. Verma, S., Joshi, A., Jain, A., & Saxena, S. (2004)., New mixed ligand complexes of dicyclopentadienyl titanium (IV) derived from sterically congested heterocyclic β-diketones and N-protected amino acids., Journal of Chemical Research, 2004(11), 768-772.
  24. Semproni, S. P., Milsmann, C., & Chirik, P. J. (2012)., Side-on dinitrogen complexes of titanocenes with disubstituted cyclopentadienyl ligands: synthesis, structure, and spectroscopic characterization., Organometallics, 31(9), 3672-3682.
  25. Tamafo Fouegue, A. D., Nono, J. H., Nkungli, N. K., & Ghogomu, J. N. (2021)., A theoretical study of the structural and electronic properties of some titanocenes using DFT, TD-DFT, and QTAIM., Structural Chemistry, 32, 353-366.
  26. Gurung, R. K., McMillen, C. D., Jarrett, W. L., & Holder, A. A. (2020)., Synthesis, characterization, NMR spectroscopic, and X-ray crystallographic studies of new titanium (IV) Schiff base salen complexes: formation of intriguing titanium (IV) species., Inorganica Chimica Acta, 505, 119496.
  27. Gómez-Ruiz, S., Gallego, B., Žižak, Ž., Hey-Hawkins, E., Juranić, Z. D., & Kaluđerović, G. N. (2010)., Titanium (IV) carboxylate complexes: Synthesis, structural characterization and cytotoxic activity., Polyhedron, 29(1), 354-360.
  28. Kumar, A. M., Budania, S., & Jain, A. (2024)., Novel organic–inorganic hybrid dimethyltin (IV) complexes of heterocyclic carboxylic acid and N-phthaloyl amino acids: Design, synthesis, spectroscopic characterization, DFT calculations and their anti-oxidant potential., Synthetic Communications, 54(5), 390-405.
  29. Budania, S., Saxena, S., & Jain, A. (2024)., Design and DFT assisted characterization of certain biopotent dimethyltin (IV) complexes: Reactivity specification and new perspectives., Journal of the Indian Chemical Society, 101198.
  30. Budania, S., Saxena, S., & Jain, A. (2022)., Assessment of DFT based optimized molecular structure-antioxidant efficacy relationship of trimethylgermanium (IV) complexes., Journal of the Indian Chemical Society, 99(5), 100419.
  31. Sharma, K., Soni, K., Saxena, S., & Jain, A. (2023)., Biopotential insights and structural chemistry of some zirconocene incorporated heterocyclic β-diketones and flexible N-protected α/β-amino acids., Indian Journal of Chemistry (IJC), 62(4), 331-338.
  32. Abbas, S. M., Ali, S., Hussain, S. T., & Shahzadi, S. (2013)., Structural diversity in organotin (IV) dithiocarboxylates and carboxylates., Journal of Coordination Chemistry, 66(13), 2217-2234.
  33. Ahmad, I., Waseem, A., Tariq, M., MacBeth, C., Bacsa, J., Venkataraman, D., ... & Tabassum, S. (2020)., Organotin (IV) derivatives of amide-based carboxylates: Synthesis, spectroscopic characterization, single crystal studies and antimicrobial, antioxidant, cytotoxic, anti-leishmanial, hemolytic, noncancerous, anticancer activities., Inorganica Chimica Acta, 505, 119433.
  34. Jensen, B. S. (1959)., The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5., Acta chem. scand, 13(8), 1668-1670.
  35. Gupta, R. K., Jain, A., & Saxena, S. (2010)., Certain New Organic-Inorganic Hybrid Complexes of Monobutyltin (Iv) of ß-Diketones/Fluorinated ß-Diketone and Sterically Congested Heterocyclic ß-Diketones: Preparation, Structural Chemistry and Structural Elucidation Based upon Spectroscopic [Ir and Nmr (1Η, 13C and 119Sn)] Studies., Main Group Metal Chemistry, 33(4-5), 167-182.
  36. Hussain, M., Zaman, M., Hanif, M., Ali, S., & Danish, M. (2008)., Synthesis and structural characterization of organotin (IV) complexes formed with [O, O] donor atoms of carboxylic acids., Journal of the Serbian Chemical Society, 73(2), 179-187.
  37. Budania, S., Saxena, S., Jain, A. (2022)., Structural Insights into Some Sterically Demanding Heterocyclic β-Diketones: Optimized Molecular Structure, Optimized Energy, Stability and Mulliken Charge Distribution Based on DFT Analysis., IOP Conf. Ser. Mater. Sci. Eng., 1248(1), 012106.