International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Investigation of potentials Water hyacinth (Ecchornia crassipes) grown at Lake Koka and Lake Abaya for bioethanol production

Author Affiliations

  • 1The Department of Biotechnology, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia
  • 2The Department of Chemistry, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia
  • 3The College of Agriculture, Hawassa University, Hawassa, Ethiopia
  • 4The Department of Water Resource Engineering and Management, Graduate School of Water resource and Irrigation Engineering, Hawassa University, Hawassa, Ethiopia

Res.J.chem.sci., Volume 14, Issue (3), Pages 13-24, October,18 (2024)

Abstract

Scarcity, environmental pollution and increasing prices of fossil fuels are issues that forced human to search for alternative energy sources such as fuels from biomass (i.e., biofuels). Bioethanol is one of the biofuels that can be produced from lignocellulosic biomass. Water hyacinth (Ecchornia crassipes) is a lignocellulosic biomass that contains high cellulose and hemicellulose with low lignin that made it good candidate biomass for bioethanol production. However, the lignocellulosic composition of water hyacinth depends on the nutritional conditions habitats where the plant grows. This study was conducted to investigate water hyacinth grown in Lake Koka and Abaya, Ethiopia, for bioethanol production. The biomass collected from these sites (Lakes) were subjected to analysis of their mineral (N, K and P) compositions of water samples and lignocellulosic (cellulose, Hemicellulose and Lignin) compositions of Water hyacinth. The results revealed that the N, P and K levels to be 5.62, 0.81 and 0.64 mg/L, respectively, for Water sample from Lake Koka whereas the corresponding values were 3.68, 0.42 and 0.42 mg/L for water samples from Lake Abaya. The cellulose, Hemicellulose and Lignin values were 30.49, 41.30 and 4.51% for water hyacinth from Lake Koka whereas composition of for the biomass from Lake Abaya values were 25.02%, 39.93% and 8.42%, respectively, for cellulose, Hemicellulose and Lignin. The values for biomass from Lake Koka were slightly higher than that of biomass from Lake Abaya. The differences were attributed to differences in mineral composition of water samples of the lakes. The optimum condition for hydrolysis of lignocellulosic for bioethanol production from water hyacinth collected from Lake Koka were 1% sulphuric acid and 60 minutes whereas for water hyacinth from Lake Abaya the corresponding conditions were 1.5% sulphuric acid and 90 minutes. The ethanol yields were 37.22 and 31.22% for water hyacinth from Lake Koka and Lake Abaya, respectively. The bioethanol product was confirmed by boiling point and FTIR spectroscopic data. From this study it was concluded that higher ethanol product from biomass collected from Lake Koka could be attributed to higher cellulose and hemicellulose compositions and lower lignin as compared to the biomass collected from Lake Abaya. The biomass from Lake Koka is preferred for ethanol production not only because of higher ethanol yield but also it requires less concentrated acid (1% H2SO4) and shorter hydrolysis time (60 minutes). Thus, water hyacinth should be given a due attention as candidate biomass for bioethanol production as it is non-edible lignocellulosic biomass. However, continues efforts are recommended to develop optimum conditions that are cost effective for production of bioethanol from water hyacinth.

References

  1. Stephen, F.L. (2005)., Fossil Fuels in the 21st Century., J. Human Environ., 34(8), 621-627.
  2. Koyama, K. (2017)., The role and future of fossil fuel., IEEJ Energy Journal, Special Issue, 80-83.
  3. Mahdavi, P. & Ross, M. (2017)., The Political Economy of Hydrocarbon Wealth and Fuel Prices.,
  4. Lehmann, T. C. (2017)., The Geopolitics of Global Energy., The Geopolitics of Global Energy: The New Cost of Plenty. Boulder, CO–London: Lynne Rienner Publishers.
  5. Chum, H. L., & Overend, R. P. (2001)., Biomass and renewable fuels., Fuel processing technology, 71(1-3), 187-195.
  6. Sims, R. E. (2003)., Bioenergy options for a cleaner environment: in developed and developing countries., Elsevier.
  7. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006)., Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels., Proceedings of the National Academy of sciences, 103(30), 11206-11210.
  8. Pittman, J. K., Dean, A. P. & Osundeko, O. (2011)., The potential of sustainable algal biofuel production using wastewater resources., Bioresource technology, 102(1), 17-25.
  9. Vandna, P., Ravindra, S. and Pankaj G. (2016)., Algal Oil Potential as a Bio Fuel and Food Supplement., Res. J. Chemical Sci., 6, 6-10.
  10. Samarina, V., Skufina, T., lexander Samarin, Ð., & Ushakov, D. (2018)., Alternative energy sources: Opportunities, experience and prospects of the Russian regions in the context of global trends., International Journal of Energy Economics and Policy, 8(2), 140-147.
  11. Konovalov, V., Pogharnitskaya, O., Rostovshchikova, A., & Matveenko, I. (2015)., Potential of renewable and alternative energy sources., In IOP Conference Series: Earth and Environmental Science, 27(1), 012068. IOP Publishing.
  12. Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021)., Production of bioethanol-A review of factors affecting ethanol yield., Fermentation, 7(4), 268.
  13. Ifeanyichukwu, E. (2023)., Bioethanol production: An Overview., University of Port Harcourt, http://dx.doi.org/ 10. 5772/intechopen.94895 (Accessed on April 22, 2023).
  14. Domínguez-Bocanegra, A. R., Torres-Muñoz, J. A., & López, R. A. (2015)., Production of bioethanol from agro-industrial wastes., Fuel, 149, 85-89.
  15. Research and Markets Report (2022)., Global Ethanol Market - Forecasts from 2022 to 2027., August 2022. https://www.researchandmarkets.com/reports/5649142/ global-ethanol-market-forecasts-from-2022-to-2027. (Accessed on 26 Nov, 2023).
  16. Saliu, B. K. (2012)., Production of ethanol from some cellulosic waste biomass hydrolyzed using fungal cellulases (Doctoral dissertation, University of Ilorin).,
  17. Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., ... & Šantek, B. (2018)., Bioethanol production from renewable raw materials and its separation and purification: a review., Food technology and biotechnology, 56(3), 289-311.
  18. Duarte, P. F., Chaves, M. A., Borges, C. D., & Mendonça, C. R. B. (2016)., Avocado: characteristics, health benefits and uses., Ciência rural, 46(4), 747-754.
  19. Badger, P. C. (2002)., Ethanol from cellulose: a general review., Trends in new crops and new uses, 14, 17-21.
  20. Hamelinck, C. N., Van Hooijdonk, G., & Faaij, A. P. (2005)., Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term., Biomass and bioenergy, 28(4), 384-410.
  21. Woldesenbet, A. G., Woldeyes, B., & Chandravanshi, B. S. (2016)., Bio-ethanol production from wet coffee processing waste in Ethiopia., SpringerPlus, 5, 1-7.
  22. Tiruye, G. A., Besha, A. T., Mekonnen, Y. S., Benti, N. E., Gebreslase, G. A., & Tufa, R. A. (2021)., Opportunities and challenges of renewable energy production in Ethiopia., Sustainability, 13(18), 10381.
  23. Zenebe Gebreegziabher, Z. G., Alemu Mekonnen, A. M., Tadele Ferede, T. F., & Gunnar Köhlin, G. K. (2014)., Profitability of biofuels production: the case of Ethiopia.,
  24. Tadele Ferede, T. F., Zenebe Gebreegziabher, Z. G., Alemu Mekonnen, A. M., Fantu Guta, F. G., & Levin, J. (2015)., Biofuel investments and implications for the environment in Ethiopia: an economy-wide analysis.,
  25. Yalew, A. W. (2022)., The Ethiopian energy sector and its implications for the SDGs and modeling., Renewable and Sustainable Energy Transition, 2, 100018.
  26. Muscat, A., De Olde, E. M., de Boer, I. J., & Ripoll-Bosch, R. (2020)., The battle for biomass: a systematic review of food-feed-fuel competition., Global Food Security, 25, 100330.
  27. Masifwa, W. F., Twongo, T., & Denny, P. (2001)., The impact of water hyacinth, Eichhornia crassipes (Mart) Solms on the abundance and diversity of aquatic macroinvertebrates along the shores of northern Lake Victoria, Uganda., Hydrobiologia, 452, 79-88.
  28. Brendonck, L., Joachim, M., Wouter, R., Nzwirashe, D., Tamuka, N., Maxwell, B., Veerle, C., Crispen, P., Kelle, M., Brian, G., Maarten, S., Nooike, A., Eddy, H., Frans, O. and Brian, M. (2003)., The Impact of Water Hyacinth (Eichhornia Crassipes) In A Eutrophic Subtropical Impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Archiv für Hydrobiologie., 158(3), 389-405., undefined
  29. Malik, A. (2007)., Environmental challenge vis a vis opportunity: the case of water hyacinth., Environment international, 33(1), 122-138.
  30. Anuja Sharma, A. S., Aggarwal, N. K., Anita Saini, A. S., & Anita Yadav, A. Y. (2016)., Beyond biocontrol: water hyacinth-opportunities and challenges.,
  31. Ebro, A., Berhe, K., Getahun, Y., Adane, Z., Alemayehu, N., Fayisa, Y., & Tegegne, A. (2017)., Water hyacinth (Eichhornia crassipes (Mart.): Land use/land cover changes and community-based management in east Shoa zone, Ethiopia., International Journal of Environmental and Agriculture Research, 3(5), 01-11.
  32. Osmond, R., and A. Petroeschhevsky (2013)., Water hyacinth Control Modules Control options for water hyacinth (Eichhornia crassipes) in Australia., Australia: New South Wales Department of Primary Industries. Retrieved from https://www. dpi. nsw. gov. au/__data/assets/pdf_file/0005/505706/waterhyacinth-control-modules-full-accessible. pdf (2013). (Accessed on 24 April, 2023).
  33. Tewabe, D. (2015)., Preliminary survey of water hyacinth in Lake Tana, Ethiopia., Global Journal of Allergy, 1(1), 013-018.
  34. Abera, M. W. (2018)., Impact of water hyacinth, Eichhornia crassipes (Martius)(Pontederiaceae) in Lake Tana Ethiopia: a review., J Aquac Res Dev, 9, 520.
  35. Harley, K. L. S., Julien, M. H., & Wright, A. D. (1996)., Water hyacinth: a tropical worldwide problem and methods for its control., 2nd International. Weed Control Congress. Copehenhagen, Denmark.
  36. Legesse, A., Kefale, F. and Tegene, T (2022)., Exploring The Potential of Water Hyacinth Ash As Source of Alkaline For Soap Production: As A Means to Control Environmental Pollution by The Invasive Weed., Comprehensive Res. Reviews Chem. Pharmacy., 1, 012-024.
  37. Adane, L., Gelaye, T., & Tesfaye, T. (2021)., Exploring of the potential of Parthenium weed ash as substitute for commercial alkali for preparation of laundry soap: as a means to control invasion of Parthenium., Frontiers in Sustainability, 2, 607125.
  38. Gunja, V. G., Priyanka, J., Kant, S. C., Dixit, A., & Jain, R. (2016)., Production of bioethanol from water hyacinth by isolated thermotolerant bacteria., International Journal of Current Science and Technology, 4, 219-223.
  39. Wang, Z., Zheng, F., & Xue, S. (2019)., The economic feasibility of the valorization of water hyacinth for bioethanol production., Sustainability, 11(3), 905.
  40. Madian, H. R., Sidkey, N. M., Abo Elsoud, M. M., Hamouda, H. I., & Elazzazy, A. M. (2019)., Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26., Arabian Journal for Science and Engineering, 44, 33-41.
  41. Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., & Fujita, M. (2008)., Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.)., Bioresource technology, 99(7), 2495-2500.
  42. Jongmeesuk, A., Sanguanchaipaiwong, V., & Ochaikul, D. (2014)., Pretreatment and enzymatic hydrolysis from water hyacinth (Eichhornia crassipes)., Current Applied Science and Technology, 14(2), 79-86.
  43. DalCorso, G., Manara, A., Piasentin, S., & Furini, A. (2014)., Nutrient metal elements in plants., Metallomics, 6(10), 1770-1788.
  44. American Public Health Association (1926)., Standard methods for the examination of water and wastewater., Vol. 6. American Public Health Association.
  45. Alemayehu, A.W., Megerssa. E., Teferi, T. and Tamiru C. (2022)., Socioeconomic Profile of Fishermen and Current Status of Fish Production in Lake Koka, Ethiopia., The Global J. Fisheries. Aquaculture., 10, 01-11.
  46. Ayele, T., Ayana, M., Tanto, T., & Asefa, D. (2014)., Evaluating the status of micronutrients under irrigated and rainfed agricultural soils in Abaya Chamo Lake Basin, South-west Ethiopia., Journal of Scientific Research and Reviews, 3(1), 18-27.
  47. Reales-Alfaro, J. G., Trujillo-Daza, L. T., Arzuaga-Lindado, G., Castaño-Peláez, H. I., & Polo-Córdoba, Á. D. (2013)., Acid hydrolysis of water hyacinth to obtain fermentable sugars., CT&F-Ciencia, Tecnología y Futuro, 5(2), 101-111.
  48. Deka, D., Das, S. P., Ravindran, R., Jawed, M., & Goyal, A. (2018)., Water hyacinth as a potential source of biofuel for sustainable development., Urban Ecology, Water Quality and Climate Change, 351-363.
  49. National Renewable Energy Laboratory (NREL)., Biomass feedstock composition and property database., USA 2005.
  50. Ayeni, A. O., Adeeyo, O. A., Oresegun, O. M., & Oladimeji, T. E. (2015)., Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass., American Journal of engineering research, 4(4), 14-19.
  51. Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011)., Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation., J Sci Ind Res, 70(2), 156-161.
  52. Bani, O. (2015)., Process selection on bioethanol production from water hyacinth (Eichhornia crassipes).,
  53. Masami, G. O., Usui, I., & Urano, N. (2008)., Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres., African journal of microbiology research, 2(5), 110-113.
  54. Silva P. A. D., Souza G., DE C., Paim A. P. S. & Lavorante A. F. (2018)., Spectrophotometric determination of reducing sugar in wines employing in-line dialysis and a multicommuted flow analysis approach., Journal of the Chilean Chemical Society, 63(2), 3994-4000.
  55. Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T., & Akaracharanya, A. (2008)., Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae., Annals of microbiology, 58, 219-225.
  56. Statistical Analysis System (SAS) Institute (2009)., SAS/STAT user’s guide., Proprietary software version 9.00. SAS Institute, Inc., Cary, NC 2009.
  57. Dersseh, M. G., Tilahun, S. A., Worqlul, A. W., Moges, M. A., Abebe, W. B., Mhiret, D. A., & Melesse, A. M. (2020)., Spatial and temporal dynamics of water hyacinth and its linkage with lake-level fluctuation: Lake Tana, a sub-humid region of the Ethiopian highlands., Water, 12(5), 1435.
  58. Setyaningsih, L., Satria, E., Khoironi, H., Dwisari, M., Setyowati, G., Rachmawati, N., ... & Anggraeni, J. (2019, December)., Cellulose extracted from water hyacinth and the application in hydrogel., In IOP Conference Series: Materials Science and Engineering (Vol. 673, No. 1, p. 012017). IOP Publishing.
  59. Bolenz, S., Omran, H., & Gierschner, K. (1990)., Treatments of water hyacinth tissue to obtain useful products., Biological Wastes, 33(4), 263-274.
  60. Timung, R., Naik Deshavath, N., Goud, V. V. & Dasu, V. V. (2016)., Effect of subsequent dilute acid and enzymatic hydrolysis on reducing sugar production from sugarcane bagasse and spent citronella biomass., Journal of Energy, (1), 8506214.
  61. Rezania, S., Din, M. F. M., Taib, S. M., Sohaili, J., Chelliapan, S., Kamyab, H., & Saha, B. B. (2017)., Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives., International Journal of hydrogen energy, 42(33), 20955-20969.
  62. Betelihem M. (2016)., Bioethanol Production from Water Hyacinth by Chemical Hydrolysis (Preliminary Study)., M.Sc. Thesis, Addis Ababa University, Ethiopia.
  63. Burton, J., Van Oosterhout, E., Ensbey, R. and Julien, M. (2010)., Water hyacinth (Eichhornia crassipes): Weed of National Significance., Department of Primary Industries New South Wales, Australia.
  64. Adamovics, A., Platace, R., & Ivanovs, S. (2016)., Influence of nitrogen fertilizers on chemical composition of energy grass., Engineering for Rural Development, Jelgava, 25(27.05).
  65. Walker, G. M. (2010)., Bioethanol: Science and technology of fuel alcohol., Bookboon.
  66. Roni, K. A., Hastarina, M., & Herawati, N. (2019)., Effect of time and concentration of sulfuric acid on yield bioethanol produced in making Bioethanol from peat soil., Journal of Physics: Conference Series, 1167, 1, 012056. IOP Publishing.
  67. Zhang, L., Li, J. H., Li, S. Z., & Liu, Z. L. (2011)., Challenges of cellulosic ethanol production from xylose-extracted corncob residues., BioResources, 6(4).
  68. Zelelew, D., Gebrehiwot, H., & Fikre, W. (2018)., Feasibility of Bioethanol production potential and optimization from selected lignocellulosic waste biomass., International Journal of Environmental Science and Natural Resources, 9(2), 89-95.
  69. Teirumnieka, E., Poisa, L., Adamovics, A., & Platace, R. (2011)., Evaluation of the Factors that Affect the Lignin Content in the Reed Canarygrass (Phalaris arundinacea L.) in Latvia.,