International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Development of an efficient electrochemical sensor for the determination of cyanide ions in aqueous media

Author Affiliations

  • 1Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger
  • 2Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger
  • 3Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger
  • 4Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger
  • 5Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger

Res.J.chem.sci., Volume 13, Issue (1), Pages 17-28, February,18 (2023)


The aim of this work is to develop an efficient electrochemical sensor based on a glassy carbon electrode coated with a thin film of mercury for the determination of cyanide ions in aqueous media. The sensor is characterised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse anodic stripping voltammetry (DPASV), to understand its behaviour and evaluate its performances. Cyclic voltammetry measurements indicate a "Nernst" type system with decreasing reversibility at pH 10. Impedance techniques indicate an easier charge transfer on the glassy carbon electrode modified with the mercury film compared to the bare glassy carbon electrode. The optimal parameters (Analytical and Differential pulse voltammetry) for cyanide determination are identified. The limits of detection (LOD) and quantification (LOQ) obtained are 0.013mg.L-1 and 0.043mg.L-1 respectively. In addition, the new sensor has good linearity, good repeatability with a calculated Relative Standard Deviation (RSD) equal to 1.88%. The studied sensor was successfully employed for the analysis of cyanide ions in well water samples using the standard addition method and the results obtained are satisfactory.


  1. Albiter, E., Barrera-Andrade, J. M., Calzada, L. A., García-Valdés, J., Valenzuela, M. A., & Rojas-García, E. (2022)., Enhancing free cyanide photocatalytic oxidation by rGO/TiO2 P25 composites., Mater, 15(15), 5284.
  2. Hernández Bello, C. Y., Figueroa-Uribe, A. F. & Hernández-Ramírez, J. (2021)., Biochemical suffocants: carbon monoxide and cyanide., Rev. Fac. Med. Hum, 22(3), 614-624.
  3. Panigrahi, N., Haranath, S. P., Aleem, M. A., Srinivas, Y., Sirga, S., & Ramkumar, S. K. (2019)., Cyanide Toxicity!! Colour of Blood Says It All., Indian J. Crit. Care Med., 23(3), 155-156.
  4. Hassane, H. A., Adamou, R., Ahmed, M. M., & Abdoulaye, A. (2015)., Optimization of the spectrophotometric determination of Aqueous Cyanide: Application on Samira (Niger) Gold Mine Groundwater Analysis., Asian J. Chem., 8(7), 481-492.
  5. Tigreros, A., & Portilla, J. (2022)., Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions., Eur. J. Org. Chem., e202200249.
  6. Gheibi, M., Eftekhari, M., Akrami, M., Emrani, N., Hajiaghaei-Keshteli, M., Fathollahi-Fard, A. M., & Yazdani, M. (2022)., A sustainable decision support system for drinking water systems: resiliency improvement against cyanide contamination., Infrast., 7(7), 88.
  7. Tran, Q. B., Khum-in, V., & Phenrat, T. (2022)., Assessing Potential Health Impacts of Cyanide-Contaminated Seepage in Paddy Field Near a Gold Mine in Thailand: Cyanide Speciation and Vapor Intrusion Modeling., Expos. Health, 14(2), 459-473.
  8. J., Moyo, D., Isunju, J. B., Bose-O’Reilly, S., Steckling-Muschack, N., Becker, J., & Mamuse, A. (2022)., Health and safety risk mitigation among artisanal and small-scale gold miners in Zimbabwe., Int. J. Environ. Res. Public Health, 19(21), 14352.
  9. Hassane, A., Abdoulkadri, A. M., & Adamou, R. (2018)., New method for complete recovery of total cyanide in water and soil and its application at the Samira gold mine (Niger)., African Journal of Pure and Applied Chemistry, 12(8), 62-74.
  10. Cacciuttolo, C., & Cano, D. (2022)., Environmental Impact Assessment of Mine Tailings Spill Considering Metallurgical Processes of Gold and Copper Mining: Case Studies in the Andean Countries of Chile and Peru., Water, 14(19), 3057.
  11. Shin, M. C., Kwon, Y. S., Kim, J. H., Hwang, K. & Seo, J. S. (2019)., Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)., Analytical Science and Technology, 32(3), 88-95.
  12. Anjani, K. N., Hamzah, B., & Abram, P. H. (2021)., Analysis of Cyanide Contents in Cassava Leaves (Manihot esculenta Crantz) Based on Boiling Time with Formation of Hydrindantin Complex by Using UV-Vis Spectrophotometry., Jurnal Akademika Kimia, 10(1), 49-52.
  13. Dagilienė, M., Markuckaitė, G., Krikštolaitytė, S., Šačkus, A., & Martynaitis, V. (2022)., Cyanide Anion Determination Based on Nucleophilic Addition to 6-[(E)-(4-Nitrophenyl) Diazenyl]-1′, 3, 3′, 4-Tetrahydrospiro [Chromene-2, 2′-Indole] Derivatives., Chemosensors, 10(5), 185.
  14. Tigreros, A., Rosero, H. A., Castillo, J. C., &Portilla, J. (2019)., Integrated pyrazolo [1, 5-a] pyrimidine–hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water., Talanta, 196, 395-401.
  15. Kumar, P. S., Lakshmi, P. R., & Elango, K. P. (2019)., An easy to make chemoreceptor for the selective ratiometric fluorescent detection of cyanide in aqueous solution and in food materials., New J. Chem., 43(2), 675-680.
  16. Attar, A., Cubillana-Aguilera, L., Naranjo-Rodríguez, I., de Cisneros, J. L. H. H., Palacios-Santander, J. M., & Amine, A. (2015)., Amperometric inhibition biosensors based on horseradish peroxidase and gold sononano particles immobilized onto different electrodes for cyanide measurements. Bioelectrochemistry, 101, 84-91., undefined
  17. Ma, J., & Dasgupta, P. K. (2010)., Recent developments in cyanide detection: a review., Anal. Chim. Acta, 673(2), 117-125.
  18. Metrohm (2001)., Determination of free cyanide by polarography., Application Bulletin 110/3 e.
  19. Riojas, A. A. C., Wong, A., Planes, G. A., Sotomayor, M. D., La Rosa-Toro, A., & Baena-Moncada, A. M. (2019)., Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples., Sens. Actuators B Chem., 287, 544-550.
  20. Junsomboon, J., & Jakmunee, J. (2018)., Determination of Cyanide in Concrete Roofing Tiles byDifferential Pulse Voltammetric Method., Chiang Mai J. Sci., 45(7), 2740-2748.
  21. Na, M. S., Kwon, Y. S., & Czae, M. Z. (1988)., Increased Sensitivity in Cyanide Measurement by Differential-Pulse Cathodic Stripping Voltammetry., J. Korean Chem. Soc., 32(2), 130-134.
  22. Kim, G. W., & Ha, J. W. (2022)., Single-Particle Study on Hg Amalgamation Mechanism and Slow Inward Diffusion in Mesoporous Silica-Coated Gold Nanorods without Structural Deformation., The Journal of Physical Chemistry Letters, 13(11), 2607-2613.
  23. Liu, Y., Xue, Q., Chang, C., Wang, R., Wang, Q., & Shan, X. (2022)., Highly efficient detection of Cd (II) ions by a stannum and cerium bimetal-modified laser-induced graphene electrode in water., Chemical Engineering Journal, 433, 133791.
  24. Maciel, C. C., de SM Freitas, A., Medrades, J. P., and Ferreira, M. (2022)., Simultaneous Determination of Catechol and Paraquat Using a Flexible Electrode of PBAT and Graphite Modified with Gold Nanoparticles and Copper Phthalocyanine (g-PBAT/AuNP/CuTsPc) LbL Film., J. Electrochem. Soc., 169, 027505
  25. Adeloju, S. B., & Gawne, K. M. (1986)., Determination of soluble cyanide in soil samples by differential pulse polarography., Anal. Chim. Acta, 188, 275-280.
  26. Mariame, C., El Rhazi, M., & Adraoui, I. (2009)., Determination of traces of copper by anodic stripping voltammetry at a rotating carbon paste disk electrode modified with poly (1,8-diaminonaphtalene)., J. Anal. Chem., 64(6), 632-636.
  27. Borrill, A. J., Reily, N. E., & Macpherson, J. V. (2019)., Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst, 144(23), 6834–6849., undefined
  28. Centre d, Protocole pour la validation d’une méthode d’analyse en chimie., DR-12-VMC, p 29.
  29. Sherigara, B. S., Shivaraj, Y., Mascarenhas, R. J., & Satpati, A. K. (2007)., Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: assessment of quantification procedures by anodic stripping voltammetry., Electrochim. Acta, 52(9), 3137-3142.
  30. Imane, A., Mama, E. R., Aziz, M. A., & Coulibaly, M. (2006)., Applications analytiques des films minces de mercure protégés par du fibrinogène pour la détermination du plomb et du cadmium dans des échantillons d’eaux usées et d’eaux de mer., Afr. sci., 2(3).
  31. Cardoso, L. M., Mainier, F. B., & Itabirano, J. A. (2014)., Analysis voltammetry of cyanide and process electrolytic removal of cyanide in effluents., Am. J. Environ. Sci., 4(6), 182-188.
  32. Anh, N. B. H., & Sharp, M. (2000)., Determination of cyanide by cathodic stripping voltammetry at a rotating silver disk electrode., Anal.Chim.Acta, 405(1-2), 145-152.