International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Knowledge organization and knowledge graph, including related technologies, applications

Author Affiliations

  • 1School of Information Management, Nanjing University, Xianlin, Qixa District, Nanjing, Jiangsu, 210023, China

Res. J. Library Sci., Volume 12, Issue (2), Pages 6-14, July,21 (2024)

Abstract

Knowledge organizations an intellectual discipline concerned with activities such as document description, indexing, and classification that serve to provide systems of representation and order for knowledge and information objects. These activities are done by librarians, archivists, subject specialists as well as by computer algorithms. A Knowledge Graph is a flexible, reusable data layer used for answering complex queries across data silos. They create supreme connectedness with contextualized data, represented and organized in the form of graphs. Built to capture the ever-changing nature of knowledge, they easily accept new data, definitions, and requirements. An Enterprise Knowledge Graph is simply a Knowledge Graph of enterprise data.

References

  1. Chen, J., Liu, Y., Dai, J., & Wang, C. (2023)., Development and status of moral education research: Visual analysis based on knowledge graph., Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1079 955
  2. Qin, J., Wang, S., Ni, H., Wu, Y., Chen, L., Guo, S., Zhang, F., Zhou, Z., & Tian, L. (2023)., Graph analysis of diffusion tensor imaging-based connectome in young men with internet gaming disorder., Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1090224
  3. Yang, B., & Liao, Y.M. (2022)., Research on enterprise risk knowledge graph based on multi-source data fusion., Neural Computing and Applications, 34(4), 2569–2582. https://doi.org/10.1007/s00521-021-05985-w
  4. Waszak, M., Lam, A. N., Hoffmann, V., Elvesater, B., Mogos, M. F., & Roman, D. (2022)., Let the Asset Decide: Digital Twins with Knowledge Graphs., 35–39. https://doi.org/10.1109/ICSA-C54293.2022.0001
  5. Tzitzikas, Y. (2022)., FS2KG: From File Systems to Knowledge Graphs (Demo)., 3254. Scopus.
  6. Mansfield, M., Tamma, V., Goddard, P., & Coenen, F. (2021)., Capturing Expert Knowledge for Building Enterprise SME Knowledge Graphs., 129–136. https://doi.org/10.1145/3460210.3493569
  7. Han, X., Dell’Aglio, D., Grubenmann, T., Cheng, R., & Bernstein, A. (2022)., A framework for differentially-private knowledge graph embeddings., Journal of Web Semantics, 72. https://doi.org/10.1016/j.websem.2021.1006 96
  8. Wang, Z., & Wan, F. (2022)., Research on Knowledge Extraction Technology for Knowledge Graph Construction., 51–56. https://doi.org/10.1109/APCT55107. 2022.00020
  9. Nunes, M., Bagnjuk, J., Abreu, A., Cardoso, E., Smith, J., & Saraiva, C. (2022)., Creating Actionable and Insightful Knowledge Applying Graph-Centrality Metrics to Measure Project Collaborative Performance., Sustainability (Switzerland), 14(8). https://doi.org/ 10.3390/su14084592
  10. Hao, X., Ji, Z., Li, X., Yin, L., Liu, L., Sun, M., Liu, Q., & Yang, R. (2021)., Construction and application of a knowledge graph., Remote Sensing, 13(13).
  11. Gallofré Ocaña, M., & Opdahl, A. L. (2022)., Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions., Technologies, 10(3).
  12. Jiang, L., Shi, J., Pan, Z., Wang, C., & Mulatibieke, N. (2022)., A Multiscale Modelling Approach to Support Knowledge Representation of Building Codes., Buildings, 12(10). https://doi.org/10.3390/buildings12101638
  13. Liu, K., Wang, F., Ding, Z., Liang, S., Yu, Z., & Zhou, Y. (2022)., Recent Progress of Using Knowledge Graph for Cybersecurity., Electronics (Switzerland), 11(15). https://doi.org/10.3390/electronics11152287
  14. Tang, W., Zhang, X., Feng, D., Wang, Y., Ye, P., & Qu, H. (2022)., Knowledge graph of alpine skiing events: A focus on meteorological conditions., PLoS ONE, 17(9 September).
  15. Zamini, M., Reza, H., & Rabiei, M. (2022)., A Review of Knowledge Graph Completion., Information (Switzerland), 13(8). https://doi.org/10.3390/ info 13080396
  16. Gao, J., Lu, F., Peng, P., & Xu, Y. (2022)., Construction of Tourism Attraction Knowledge Graph Based on Web Text and Transfer Learning., Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 47(8), 1191–1200 and 1219.
  17. Jiomekong, A. A. J., & Asong, F. M. D. (2022)., Designing, implementing and deploying an Enterprise Knowledge Graph from A to Z., 87–88. https://doi.org/10. 1145/3531056.3542761
  18. Konstantinidis, I., Maragoudakis, M., Magnisalis, I., Berberidis, C., & Peristeras, V. (2022)., Knowledge-driven Unsupervised Skills Extraction for Graph-based Talent Matching., ACM International Conference Proceeding Series. https://doi.org/10.1145/3549737.3549769
  19. Wang, M., Wang, H., Li, B., Zhao, X., & Wang, X. (2022)., Survey on Key Technologies of New Generation Knowledge Graph., Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 59(9), 1947–1965. https://doi.org/10.7544/issn1000-1239.20210829
  20. Xu, R., Geng, B., & Liu, S. (2022)., Research on structural knowledge extraction and organization for multi-modal governmental documents., Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 44(7), 2241–2250. https://doi.org/10.12305/ j.issn.1001-506X.2022.07.20
  21. Guangjian, L., & Liqun, L. (2020)., Towards Knowledge Fusion: The Development Trend of Information Science in Big Data Environment., Journal of Library Science in China, 46(6), 26–40. https://doi.org/10.13530/j.cnki.jlis. 2020046
  22. Nnaji, C., Gambatese, J., Karakhan, A., & Osei-Kyei, R. (2020)., Development and Application of Safety Technology Adoption Decision-Making Tool., Journal of Construction Engineering and Management, 146(4). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001808
  23. Xia, H., Wang, Y., Gauthier, J., & Zhang, J. Z. (2022)., Knowledge graph of mobile payment platforms based on deep learning: Risk analysis and policy implications., Expert Systems with Applications, 208. https://doi.org/10. 1016/j.eswa.2022.118143
  24. Sellami, S., & Zarour, N. E. (2022)., Keyword-based faceted search interface for knowledge graph construction and exploration., International Journal of Web Information Systems, 18(5–6), 453–486. https://doi.org/10.1108/IJWIS-02-2022-0037
  25. Seddigh, E. M., Abazari, Z., & Hariri, N. (2022)., Development of Iranian Pistachio Knowledge Management Model Based on Knowledge Management for Development (KM4D) Model., Journal of Nuts, 13(4), 259–271. https://doi.org/10.22034/jon.2022.1950091.1149
  26. Liu, Z., Gu, Z., Thelen, T., Estrecha, S. G., Zhu, R., Fisher, C. K., D’Onofrio, A., Shimizu, C., Janowicz, K., Schildhauer, M., Stephen, S., Rehberger, D., Li, W., & Hitzler, P. (2022)., Knowledge explorer: Exploring the 12-billion-statement KnowWhereGraph using faceted search (demo paper)., GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information
  27. Khobragade, A. R., & Ghumbre, S. U. (2022)., Study and analysis of various link predictions in knowledge graph: A challenging overview., Intelligent Decision Technologies, 16(4), 653–663. https://doi.org/10.3233/IDT-210103
  28. Vasilevich, A., & Wetzel, M. (2023)., Multilingual Knowledge Systems as Linguistic Linked Open Data., Cognitive Technologies, 319–324. https://doi.org/10.1007/ 978-3-031-17258-8_23
  29. Sekkal, H., Amrous, N., & Bennani, S. (2022)., Knowledge graph-based method for solutions detection and evaluation in an online problem-solving community., International Journal of Electrical and Computer Engineering, 12(6), 6350–6362. https://doi.org/10.11591/ijece.v12i6.pp6350-6362
  30. Chen, Y., Li, H., Li, H., Liu, W., Wu, Y., Huang, Q., & Wan, S. (2022)., An Overview of Knowledge Graph Reasoning: Key Technologies and Applications., Journal of Sensor and Actuator Networks, 11(4). https://doi.org/10. 3390/jsan11040078
  31. Chaves-Fraga, D., Corcho, O., Yedro, F., Moreno, R., Olías, J., & De La Azuela, A. (2022)., Systematic Construction of Knowledge Graphs for Research-Performing Organizations., Information (Switzerland), 13(12). https://doi.org/10.3390/info13120562
  32. Takko, T., Bhattacharya, K., Lehto, M., Jalasvirta, P., Cederberg, A., & Kaski, K. (2023)., Knowledge mining of unstructured information: Application to cyber domain., Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28796-6
  33. Ren, H., Zhang, L., Whetsell, T. A., & Ganapati, N. E. (2023)., Analyzing Multisector Stakeholder Collaboration and Engagement in Housing Resilience Planning in Greater Miami and the Beaches through Social Network Analysis., Natural Hazards Review, 24(1). https://doi.org/10.1061/ (ASCE)NH.1527-6996.0000594
  34. Zhu, Z., Huang, T., Zhen, Z., Wang, B., Wu, X., & Li, S. (2023)., From sMRI to task-fMRI: A unified geometric deep learning framework for cross-modal brain anatomo-functional mapping., Medical Image Analysis, 83. Scopus.
  35. Goyal, N., Mamidi, R., Sachdeva, N., & Kumaraguru, P. (2023)., Warning: It’s a scam!! Towards understanding the Employment Scams using Knowledge Graphs., 303–304.
  36. Huang, Z., Guo, X., Liu, Y., Zhao, W., & Zhang, K. (2023)., A smart conflict resolution model using multi-layer knowledge graph for conceptual design., Advanced Engineering Informatics, 55. https://doi.org/10.1016/j.aei. 2023.101887
  37. Kaiser, F. K., Dardik, U., Elitzur, A., Zilberman, P., Daniel, N., Wiens, M., Schultmann, F., Elovici, Y., & Puzis, R. (2023)., Attack Hypotheses Generation Based on Threat Intelligence Knowledge Graph., IEEE Transactions on Dependable and Secure Computing, 1–17. https://doi.org/ 10.1109/TDSC.2022.3233703