International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Review on the Proton Exchange Membrane Fuel Cell (PEMFC) in Benin Republic (West Africa)

Author Affiliations

  • 1Laboratoire de Physique du Rayonnement (LPR), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin
  • 2Laboratoire de Chimie Organique Physique et de Synthèse (LaCOPS), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin
  • 3Laboratoire de Physique du Rayonnement (LPR), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin
  • 4Laboratoire de Chimie Organique Physique et de Synthèse (LaCOPS), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin
  • 5Laboratoire de Physique du Rayonnement (LPR), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin
  • 6Laboratoire de Physique du Rayonnement (LPR), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi BP : 526 UAC, Bénin

Res. J. Physical Sci., Volume 12, Issue (2), Pages 8-29, August,4 (2024)

Abstract

Energy is fundamental to the socio-economic development of all nations. But the use of fossil fuels causes problems for life on earth because of poorly controlled emissions of greenhouse gases, responsible of global warming. It is therefore necessary to move towards green renewable energy, more promising sources of energy, "clean" and respectful of our environment. Hydrogen seems more reassuring because of its abundance in nature and no Carbone emission through fuel cells technology. The Proton Exchange Member Fuel Cells (PEMFC) use hydrogen as a fuel to generate electricity, but it remains very underdeveloped in West Africa, mainly in Benin Republic. The membrane, one of the fuel cell’s components is the core material of the fuel cells device, not only because it allows the exchange of protons, transferred through the electrodes of the fuel cells, but also because of the rarity of Nafion, the best material for manufacturing the existent composite membrane. The main objective of our study is to build literature review on proton exchange membranes which can lead us to manufacture local composite membrane with improved properties, compared to Nafion membrane and expand the use of fuel cells in our region. The Results show that several authors propose chemical protocol to obtain chitosane and chitin, which properties fit those of composite membrane proton exchange. The membranes of composite fuel cells can be made using certain crustaceans’ shells, such as crabs, shrimps, and over material like coconut husks, clays and snails’ shells. The authors also present the advantages, the limitations of fuel cells functioning and the social economic aspect of fuel cells in general.

References

  1. EPA (2017)., Overview of greenhouse gases: Carbon dioxide emissions., U.S. Environmental Protection Agency. http://safetynet.dropmark.com/304772/6659915
  2. Lipman, T. E., & Weber, A. Z. (2019)., Fuel cells and hydrogen production: A volume in the Encyclopedia of sustainability science and technology.,
  3. Gharnit, S., Bouzahzah, M., & Bounahr, I. (2021)., Impact des énergies renouvelables sur la croissance économique et les émissions du CO2 au Maroc: Une analyse empirique en modèle vectoriels auto régressifs., Revue Internationale du Chercheur, 2(2).
  4. Benchrifa, R., Bennouna, A., & Zejli, D. (2007)., Rôle de l’hydrogène dans le stockage de l’électricité à base des énergies renouvelables., Revue des Energies Renouvelables CER, 7, 103-108.
  5. Belacel, M., Mahmah, B., Salhi, N., & Morsli, G. (2012)., La technologie d, In 2ème Séminaire International sur les Energies Nouvelles et Renouvelables, SIENR
  6. Ahuja, A., Waghole, D. R., & Ramdasi, S. S. (2022)., Fuel Cell Technologies for Automotive Applications., STM Journal of Power Electronics & Power Systems.
  7. Fopah‐Lele, A., Kabore‐Kere, A., Tamba, J. G., & Yaya‐Nadjo, I. (2021). Solar electricity storage through green hydrogen production: A case study. International Journal of Energy Research, 45(9), 13007-13021., undefined, undefined
  8. Jumare, I. A. (2019)., Design of Standalone Photovoltaics (PV)/Biogas Hybrid Power System with Hydrogen Storage: Case of Northern Nigeria.,
  9. Towanou, O. J., Donnou, H. E. V., N’Gobi, G. K., Leode, A. E., & Kounouh, B. (2023)., Solar Energy Storage by Fuel Cell Technology at Abomey-Calavi (Benin)., Journal of the Nigerian Society of Physical Sciences, 1264-1264.
  10. Djaoui, A., & Boudjerda, N. E. (2020)., Etude et modélisation d’une source d’énergie électrique à base d’une pile à combustible (Doctoral dissertation, Université de Jijel).,
  11. Bento, N. (2010)., La transition vers une économie de l,
  12. Franck-Lacaze, L., Bonnet, C., & Lapicque, F. (2016)., Les membranes pour piles à combustible PEMFC., Techniques de l
  13. Lü, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P., & Meng, L. (2020)., Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm., Energy Conversion and Management, 205, 112474.
  14. Zhang, Z. (2010)., Modélisation mécanique des interfaces multi-contacts dans une pile à combustible (Doctoral dissertation, Evry-Val d,
  15. Wang, Y., Luo, S., Kwok, HY, Pan, W., Zhang, Y., Zhao, X. et Leung, DY (2021)., Piles à combustible microfluidiques avec différents types de combustibles : une revue prospective., Examens des énergies renouvelables et durables, 141, 110806.
  16. Abdelhak, Y. O. U. C. E. F. I. (2017)., Modélisation d’une pile à combustible de type PEM., (Doctoral dissertation, Universite Mohamed Boudiaf-M’SILA).
  17. Cherigui, A., & Badra, A. (2022)., Modélisation et Simulation d’un Véhicule Electrique à Piles à Combustible., (Doctoral dissertation, university of M
  18. Schönbein, C. F. (1839)., On the voltaic polarization of certain solid and fluid substances: To the editors of the Philosophical Magazine and Journal., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(85), 43-45.
  19. Grove, W. R. (1842)., On a gaseous voltaic battery., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(140), 417-420.
  20. Belatel, M., Aissous, F. Z., & Ferhat, F. (2012)., Contribution à l’étude d’une pile à combustible de type PEMFC utilisée pour la production d’énergie électrique verte., Journal of Renewable Energies, 15(1), 13-28.
  21. Langer, L. (1889)., A new form of gas battery., Proceedings of the Royal Society of London, 46, 296-304.
  22. Liebhafsky, H. A., & Cairns, E. J. (1968)., Fuel cells and fuel batteries., Guide to their research and development.
  23. Koppel, T. (1999)., Powering the future: the Ballard fuel cell and the race to change the world.,
  24. Belkacem, B. S. (2011)., Etude des phénomènes des écoulements des gaz dans les canaux dans une pile a combustible de type PEMFC (Doctoral dissertation, Batna, Université El-Hadj Lakhdar. Faculté des Sciences).,
  25. Auto Blog Green (2010)., 2008 chevyequinox fuel cell., http://green.autoblog.com/photos/2008-chevroletequinox-fuel-cell/
  26. Lamy, C., Jones, D. J., Coutanceau, C., Brault, P., Martemianov, S., & Bultel, Y. (2011)., Do not forget the electrochemical characteristics of the membrane electrode assembly when designing a Proton Exchange Membrane Fuel Cell stack., Electrochimica Acta, 56(28), 10406-10423.
  27. Mohamedi, A., & Boudjerda, N. E. (2021)., Amélioration des performances d,
  28. Rayment, C., & Sherwin, S. (2003)., Introduction to fuel cell technology., Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, 11-12.
  29. Fuel Cell Energy (2018)., Transportation Applications., https://www.fuelcellenergy.com/supply/hydrogen, Accessed May 2018.
  30. Litzelman S. J., Hertz J. L, Jung W. and Tuller H. L. (2008)., Opportunities and challenges in materials development for thin film solid oxide fuel cells., Fuel Cells, 8(5), 294–302.
  31. Hooie, D. T., & Camara, E. H. (1985)., Onsite industrial applications for natural gas-fueled fuel cells., Fuel Cell Semin, 182-185.
  32. Friede, K. W. (2003)., Modélisation et caractérisation d, (Doctoral dissertation, Vandœuvre-lès-Nancy, INPL).
  33. Lachichi, A. (2005)., Modélisation et stabilité d,
  34. Mabrouk, W. (2012)., Synthèse et caractérisation de nouvelles membranes protoniques: Applications en pile à combustible à membrane échangeuse de protons (Doctoral dissertation, Conservatoire national des arts et metiers-CNAM; Université Tunis El Manar., Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis (Tunisie)).
  35. Ouagueni, F., Boumehraz, M., & Belhamdi, S. (2019)., A Fuzzy Model Feed Forward Predictive Control of the Nonlinear Tubular Solid-Oxide Fuel Cell System., Advances in Modelling and Analysis C, 74(2-4), 71-79.
  36. Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021)., Environmental aspects of fuel cells: A review. Science of the Total Environment, 752, 141803., undefined
  37. Chen, X., He, W., Ding, L. X., Wang, S., & Wang, H. (2019)., Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework., Energy & Environmental Science, 12(3), 938-944.
  38. Zhu, Q. (2015)., High-efficiency power generation–review of alternative systems., Tech Rep, 4, 15-25.
  39. Giddey, S., Ciacchi, F. T., & Badwal, S. P. S. (2004)., Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity., Journal of power sources, 125(2), 155-165.
  40. Giorgi, L., & Leccese, F. (2013)., Fuel cells: Technologies and applications., The Open Fuel Cells Journal, 6(1).
  41. Ressam, I. (2017)., Élaboration et caractérisation de nouvelles membranes composites à conduction protonique pour les piles à combustible (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI; Université Cadi Ayyad (Marrakech, Maroc)).,
  42. Cheriet, H., Chikhi, Z., & Rekaik, M. (2022)., Élaboration et caractérisation de nickelâtes de Néodyme comme cathode en milieu alcalin.,
  43. Bultel, Y., Klein, J. M., & Fouletier, J. (2011)., Piles à combustible., La méthanisation (2e ed.), 348.
  44. Desplanche, S. (2018)., De l,
  45. Peng, J., Huang, J., Wu, X. L., Xu, Y. W., Chen, H., & Li, X. (2021)., Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review., Journal of Power Sources, 505, 230058.
  46. Sopian K. (2005)., Défis et développements futurs dans les piles à combustible à membrane échangeuse depro tons., Elsevier Ltd.; 2005.
  47. Comparaison des technologies des piles à combustible (2008)., Centre d,
  48. Tsuchiya H, Kobayashi O. Coût de production de masse de la pile à combustible PEM par courbe d, undefined, undefined
  49. Carrette, L., Friedrich, K. A., & Stimming, U. (2001)., Fuel cells-fundamentals and applications., Fuel cells, 1(1), 5-39.
  50. Scott K, Taama WM and Argyropoulos P. (1999)., Aspects techniques du système de pile à combustible au méthanol direct., J Sources d
  51. Hatanaka T, Hasegawa N, Kamiya A, Kawasumi M, Morimoto Y and Kawahara K. (2002)., Performances des cellules de piles à combustible au méthanol direct avec membranes greffées., Carburant, 81, 2173–6.
  52. Birch, H. (2018)., Les réactions redox., 50 clés pour comprendre, 52-55.
  53. Kordesch K. (1999)., Applications des piles à combustible alcalines, technologie énergétique innovante., Autriche : Institut d
  54. Sammes, N., Bove, R., & Stahl, K. (2004)., Phosphoric acid fuel cells: Fundamentals and applications., Current opinion in solid state and materials science, 8(5), 372-378.
  55. Bauman J. and Kazerani M. (2008)., Une étude comparative des véhicules à pile à combustible-batterie, à pile à combustibleultracapacité et à pile à combustible-batterie-ultracapacité., Transactions IEEE sur la technologie automobile, 57(2), 760-769.
  56. Singhal S. C. (2000)., Progrès dans la technologie des piles à combustible solide., Solid State Ionics, 135, 305-13.
  57. Andújar, J. M., & Segura, F. (2009)., Fuel cells: History and updating. A walk along two centuries., Renewable and sustainable energy reviews, 13(9), 2309-2322.
  58. Alias, M. S., Kamarudin, S. K., Zainoodin, A. M., & Masdar, M. S. (2020)., Active direct methanol fuel cell: An overview., International Journal of Hydrogen Energy, 45(38), 19620-19641.
  59. Wang, Y., Diaz, D. F. R., Chen, K. S., Wang, Z., & Adroher, X. C. (2020)., Materials, technological status, and fundamentals of PEM fuel cells–a review., Materials today, 32, 178-203.
  60. Yang, B., Wang, J., Zhang, M., Shu, H., Yu, T., Zhang, X., ... & Sun, L. (2020)., A state-of-the-art survey of solid oxide fuel cell parameter identification: Modelling, methodology, and perspectives., Energy Conversion and Management, 213, 112856.
  61. Antolini, E. (2011)., The stability of molten carbonate fuel cell electrodes: A review of recent improvements., Applied energy, 88(12), 4274-4293.
  62. Stonehart, P., & Wheeler, D. (2005)., Phosphoric acid fuel cells (PAFCs) for utilities: Electrocatalyst crystallite design, carbon support, and matrix materials challenges., Modern aspects of electrochemistry, 373-424.
  63. McLean, G. F., Niet, T., Prince-Richard, S., & Djilali, N. (2002)., An assessment of alkaline fuel cell technology., International Journal of Hydrogen Energy, 27(5), 507-526.
  64. Besson, A. (2014)., Étude de polymères pour l,
  65. Maiyalagan, T., & Pasupathi, S. (2010)., Components for PEM fuel cells: An overview., Materials science forum, 657, 143-189. Trans Tech Publications Ltd.
  66. Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., ... & Guiver, M. D. (2021)., Designing the next generation of proton-exchange membrane fuel cells., Nature, 595(7867), 361-369.
  67. Rosli, R. E., Sulong, A. B., Daud, W. R. W., Zulkifley, M. A., Husaini, T., Rosli, M. I., ... & Haque, M. A. (2017)., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system., International Journal of Hydrogen Energy, 42(14), 9293-9314.
  68. Pollet, B. G., Kocha, S. S., & Staffell, I. (2019)., Current status of automotive fuel cells for sustainable transport., Current opinion in Electrochemistry, 16, 90-95.
  69. Thompson, S. T., James, B. D., Huya-Kouadio, J. M., Houchins, C., DeSantis, D. A., Ahluwalia, R., ... & Papageorgopoulos, D. (2018)., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook., Journal of Power Sources, 399, 304-313.
  70. Jouin, M. (2015)., Contribution au pronostic d,
  71. LMAS (2024)., Laboratory for Manufacturing And Sustainability., http: //lma.berkeley.edu/
  72. Qiu, Z., Yun, Y., He, M., & Wang, L. (2023)., Recent developments in ion conductive membranes for CO2 electrochemical reduction., Chemical Engineering Journal, 456, 140942.
  73. Li, Y., Zhou, Z., Liu, X., & Wu, W. T. (2019)., Modeling of PEM fuel cell with thin MEA under low humidity operating condition., Applied energy, 242, 1513-1527.
  74. Li, J., Pan, M., & Tang, H. (2014)., Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells., RSC advances, 4(8), 3944-3965.
  75. Gruger, A., Régis, A., Schmatko, T., & Colomban, P. (2001)., Nanostructure of Nafion® membranes at different states of hydration: An IR and Raman study., Vibrational Spectroscopy, 26(2), 215-225.
  76. Yoshitake, M., Yanagisawa, E., Naganuma, T., & Kunisa, Y. (1999)., PEMFC Development at Asahi Glass Co., Ltd., MRS Online Proceedings Library (OPL), 575, 213.
  77. Matsumoto, H., Yamamoto, R., & Tanioka, A. (2005)., Membrane potential across low-water-content charged membranes: Effect of ion pairing., The Journal of Physical Chemistry B, 109(29), 14130-14136.
  78. Shrivastava, A., Tomlinson, I. A., Roy, A., Johnson, J. E., Jons, S., Funk, C. V., ... & Peery, M. (2016)., Dow Chemical: Materials Science Contributions to Membrane Production., In Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products (227-265). Cham: Springer International Publishing.
  79. Aricò, A. S., Di Blasi, A., Brunaccini, G., Sergi, F., Dispenza, G., Andaloro, L., ... & Jones, D. J. (2010)., High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane., Fuel Cells, 10(6), 1013-1023.
  80. Chauhan, A. S., Sridevi, S., Chalasani, K. B., Jain, A. K., Jain, S. K., Jain, N. K., & Diwan, P. V. (2003)., Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin., Journal of controlled release, 90(3), 335-343.
  81. Jiang, B., Yu, L., Wu, L., Mu, D., Liu, L., Xi, J., & Qiu, X. (2016)., Insights into the impact of the nafion membrane pretreatment process on vanadium flow battery performance., ACS applied materials & interfaces, 8(19), 12228-12238.
  82. Garcia-Vasquez, W., Dammak, L., Larchet, C., Nikonenko, V., & Grande, D. (2016)., Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis., Journal of Membrane Science, 507, 12-23.
  83. Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010)., Review of the proton exchange membranes for fuel cell applications., International journal of hydrogen energy, 35(17), 9349-9384.
  84. Bdiri, M., Dammak, L., Larchet, C., Hellal, F., Porozhnyy, M., Nevakshenova, E., ... & Nikonenko, V. (2019)., Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes., Separation and Purification Technology, 210, 636-650.
  85. RS, R. R., Rashmi, W., Khalid, M., Wong, W. Y., & Priyanka, J. (2020)., Recent progress in the development of aromatic polymer-based proton exchange membranes for fuel cell applications., Polymers, 12(5), 1061.
  86. Valappil, R. S. K., Ghasem, N., & Al-Marzouqi, M. (2021)., Current and future trends in polymer membrane-based gas separation technology: A comprehensive review., Journal of Industrial and Engineering Chemistry, 98, 103-129.
  87. Zhang, Y., Li, J., Ma, L., Cai, W., & Cheng, H. (2015)., Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement., Energy Technology, 3(7), 675-691.
  88. Smitha, B., Sridhar, S., & Khan, A. A. (2003)., Synthesis and characterization of proton conducting polymer membranes for fuel cells., Journal of Membrane Science, 225(1-2), 63-76.
  89. Sajid, A., Pervaiz, E., Ali, H., Noor, T., & Baig, M. M. (2022)., A perspective on development of fuel cell materials: Electrodes and electrolyte., International Journal of Energy Research, 46(6), 6953-6988.
  90. Zakaria, Z., Shaari, N., Kamarudin, S. K., Bahru, R., & Musa, M. T. (2020)., A review of progressive advanced polymer nanohybrid membrane in fuel cell application., International Journal of Energy Research, 44(11), 8255-8295.
  91. Akrout, A. (2020)., Membranes hybrides nanostructurées pour application en piles à combustible (Doctoral dissertation, Université Montpellier).,
  92. Pinchart, C. (2022)., Confinement nanométrique unidimensionnel d,
  93. Samhari, O. (2021)., Membranes céramiques et polymères modifiées par de l’oxyde de graphène pour la rétention de molécules organiques et le dessalement d’eaux saumâtres et d’eau de mer (Doctoral dissertation, Université Rennes 1; Université Hassan II (Casablanca, Maroc)).,
  94. Knauth, P., & Schoonman, J. (Eds.). (2007)., Nanocomposites: matériaux conducteurs ioniques et spectroscopies structurales. Springer Science et médias d, Journal et autres informations.
  95. Grondin-Perez, K. A. M. S. (2021)., Étude expérimentale d,
  96. El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018)., Extraction, chemical modification and characterization of chitin and chitosan., International journal of biological macromolecules, 120, 1181-1189.
  97. Kreuer, K. D. (1996)., Proton conductivity: materials and applications., Chemistry of materials, 8(3), 610-641.
  98. Karimi-Maleh, H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., ... & Sillanpää, M. (2021)., Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review., Journal of Cleaner Production, 291, 125880.
  99. Desbrières, J. (2002)., Chitine et chitosane., Actualité Chimique, (11/12), 39-44.
  100. Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2019)., A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell., Biochemical Engineering Journal, 148, 170-177.
  101. Chebbout, F., & Belounis, R. (2020)., Renforcement des poteaux en béton armé par chemisage des sections aux moyens de matériaux composites.,
  102. Sanchez, C. (2012)., Chimie des matériaux hybrides (No. 111, pp. 177-209)., Collège de France.
  103. Naoui, Y., & Hamamda, S. (2021)., Influence des additions nanométriques sur les propriétés thermodynamiques et structurales des matériaux (Doctoral dissertation, Université Frères Mentouri-Constantine 1).,
  104. Elsevier. Bergaya, F., & Lagaly, G. (2006)., General introduction: clays, clay minerals, and clay science., Developments in clay science, 1, 1-18.
  105. Gaombalet, J. (2004)., Le gonflement des argiles et ses effets sur les ouvrages souterrains de stockage (Doctoral dissertation, Palaiseau, Ecole polytechnique).,
  106. Avila, M. H. (2007)., Etude de mélanges ternaires epoxyde/PMMA/montmorillonite: élaboration, contrôle de la morphologie et des propriétés (Doctoral dissertation, Lyon, INSA).,
  107. Liu, Y., Wang, J., Zhang, H., Ma, C., Liu, J., Cao, S., & Zhang, X. (2014)., Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions., Journal of Power Sources, 269, 898-911.
  108. Kedang, YI, Priyangga, A., Atmaja, L. et Santoso, M. (2022)., Etude des caractéristiques et des performances d, Avances, RSC, 12(47), 30742-30753.