International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Cytogenotoxicity evaluation of Flucloxacillin using the Allium cepa assay

Author Affiliations

  • 1Institute of Teacher Education and Information Technology, Southern Philippines Agri-business and Marine and Aquatic School of Technology (SPAMAST), Malita Davao Occidental Philippines
  • 2Institute of Teacher Education and Information Technology, Southern Philippines Agri-business and Marine and Aquatic School of Technology (SPAMAST), Malita Davao Occidental Philippines
  • 3Research and Laboratory Services Center (RLSC), Southern Philippines Agri-business and Marine and Aquatic School of Technology (SPAMAST), Malita Davao Occidental Philippines

Int. Res. J. Medical Sci., Volume 13, Issue (1), Pages 1-7, February,28 (2025)

Abstract

This study investigated the cytogenotoxic effects of flucloxacillin capsules, an antibiotic used to treat skin infections, using the Allium cepa assay. Different concentrations of flucloxacillin (50 ppm, 125 ppm, 250 ppm, and 500 ppm) were applied to assess their impact on root length, mitotic index, and chromosomal aberrations during a 96-hour exposure period. The results revealed a concentration-dependent root growth inhibition, indicating a dose-response relationship. Statistical analysis demonstrated significant differences (P < 0.05) in root length among the tested concentrations. Moreover, as flucloxacillin concentrations increased, there was an observed decrease in the mitotic index, suggesting a cytotoxic effect. Some chromosomal aberrations, including vagrant chromosomes, bridges, fragments, and sticky chromosomes, were observed, with bridges and fragments being predominant at lower concentrations. These findings highlighted the potential genotoxicity of flucloxacillin and emphasized the utility of the Allium cepa assay for monitoring the adverse effects of antibiotics, such as flucloxacillin. This study reported the cytogenotoxic effect of flucloxacillin, a known antibiotic for treating common skin infections. The findings can be utilized as a to revisit tentative cytogenotoxic properties of flucloxacillin.

References

  1. De Menezes M. N., De Marco B. A., Fiorentino F. a. M., Zimmermann A., Kogawa A. C., & Salgado H. R. N. (2018)., Flucloxacillin: A review of characteristics, properties and analytical methods., Critical Reviews in Analytical Chemistry, 49(1), 67–77. https://doi.org/10.1080/ 10408347.2018.1468728
  2. Reygaert, W. C. (2018)., An overview of the antimicrobial resistance mechanisms of bacteria., AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3. 482
  3. Flucloxacillin (2022)., Healthify., https://healthify.nz/ medicines-a-z/f/flucloxacillin. 12, February, 2022.
  4. DrugBank (2024)., Flucloxacillin: uses, interactions, mechanism of action., DrugBank Online. https://go.drugbank.com/drugs/DB00301
  5. Bosio S. & Laughinghouse H. D. (2012)., Bioindicator of Genotoxicity: The Allium cepa Test., In InTech eBooks. https://doi.org/10.5772/31371
  6. FDA Verification Portal (2024)., Food and Drug Administration Philippines;, Retrieved August 11, 2024, fromhttps://verification.fda.gov.ph/ALL_DrugProductslist.php?start=2861
  7. Kannangara D., & Pathiratne A. (2015)., Toxicity assessment of industrial wastewaters reaching Dandugan Oya, Sri Lanka using a plant-based bioassay., Journal of the National Science Foundation of Sri Lanka, 43(2), 153. https://doi.org/10.4038/jnsfsr.v43i2.7943
  8. Fiskesj Ö, G. (1997)., Allium Test for Screening Chemicals: Evaluation of Cytologic Parameters., In W. Wang, J. W. Gorsuch, & J. S. Hughes (Eds.), Plants for Environmental Studies (pp. 308-333). Boca Raton, New York: CRC Lewis Publishers. http://dx.doi.org/10.1201 /9781420048711.ch11
  9. Francis N. A., Hood K., Lyons R., & Butler C. C. (2016)., Understanding flucloxacillin prescribing trends and treatment non-response in UK primary care: a Clinical Practice Research Datalink (CPRD) study., Journal of Antimicrobial Chemotherapy, 71(7), 2037–2046. https://doi.org/10.1093/jac/dkw084
  10. Blumberg P. M., & Strominger J. L. (1974)., Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes., Bacteriological Reviews, 38(3), 291–335.
  11. Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E., & Berta, G. (2006)., Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings., Environmental and Experimental Botany, 58(1–3), 253–260. https://doi.org/10.1016/j.envexpbot.2005.09.008
  12. Seth, C. S., Chaturvedi, P. K., & Misra, V. (2007)., Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodelapolyrrhiza L.) in response to its accumulation., Environmental Toxicology, 22(6), 539–549. https://doi.org/10.1002/tox.20292
  13. Aloni, R. (2013)., Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation., Planta, 238(5), 819–830. https://doi.org/10.1007/s00425-013-1927-8
  14. Barman M., & Ray S. (2023)., Cytogenotoxic effects of 3-epicaryoptin in Allium cepa L. root apical meristem cells., Protoplasma, 260(4), 1163–1177. https://doi.org/10.1007/ s00709-023-01838-6
  15. Nefic H., Musanovic J., Metovic A. & Kurteshi K. (2013)., Chromosomal and nuclear alterations in root tip cells of allium CEPA L. induced by alprazolam., Medical Archives, 67(6), 388. https://doi.org/10.5455/medarh.2013. 67.388-392
  16. Lubini G., Fachinetto J. M., Laughinghouse H. D., Paranhos J. T., Silva A. C. F. & Tedesco S. B. (2008)., Extracts affecting mitotic division in root-tip meristematic cells., Biologia, 63(5), 647–651. https://doi.org/10.2478/ s11756-008-0108-x
  17. Bernard, J. N., Chinnaiyan, V., Almeda, J., Catala-Valentin, A., & Andl, C. D. (2023)., Lactobacillus sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease., Antioxidants, 12(7), 1314. https://doi.org/10.3390/antiox12071314
  18. Leme D. M., & Marin-Morales M. A. (2009)., Allium cepa test in environmental monitoring: A review on its application., Mutation Research/Reviews in Mutation Research, 682(1), 71–81. https://doi.org/10.1016/j.mrrev. 2009.06.002
  19. Magda I. Soliman (2001)., Genotoxicity Testing of Neem Plant (Azadirachta indica A. Juss.) Using the Allium cepa Chromosome Aberration Assay., Journal of Biological Sciences, 1(11), 1021–1027. https://doi.org/10.3923/jbs. 2001.1021.1027
  20. Sudhakar, R., Gowda, K. N. N., & Venu, G. (2001)., Mitotic Abnormalities Induced by Silk Dyeing Industry Effluents in the Cells of Allium cepa., Cytologia, 66(3), 235–239. https://doi.org/10.1508/cytologia.66.235
  21. Saxena P. N., Chauhan L. K. S. & Gupta S. K. (2005)., Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage., Toxicology, 216(2-3), 244-252.
  22. Jühlen R., Landgraf D., Huebner A. & Koehler K. (2018)., Triple A patient cells suffering from mitotic defects fail to localize PGRMC1 to mitotic kinetochore fibers., Cell division, 13, 8. https://doi.org/10.1186/s13008-018-0041-5
  23. Bianchi J., Fernandes T. C. C. & Marin-Morales M. A. (2016)., Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them., Chemosphere, 144, 475–483. https://doi.org/10.1016/j. chemosphere.2015.09.021