Some results on double sequence theorems in metrizable spaces
Author Affiliations
- 1Ballari Institute of Technology and Management, Ballari, Karnataka 583104, India
Res. J. Mathematical & Statistical Sci., Volume 8, Issue (1), Pages 42-44, January,12 (2020)
Abstract
In this paper, we have discussed some generalized results in double sequence theorems on metrizable spaces and also some new concepts of generalized metric spaces.
References
- Nagata J.A. (1969)., Contribution to theory of metrization., Jol.Inst.Polytech, Osaaka City Univeristy, 8, 185-192.
- Martin (1950)., Dynamical behaviour and properties in Merticspacs.,
- Bing (2001), Extending to metric space, Duke Maths.Jol.14., undefined, undefined
- Jleli M. and Samet B. (2015)., A generalized metric space and related fixed point theorems., Fixed Point Theory Appl., 33.
- Kannan R. (1968)., Some results on fixed points., Bull. Calcutta Math.Soc., 60, 71-76.
- Senapati T. and Dey L.K. (2016)., Dekic Extensions of Ciric and Wardowski type fixed point theorems in D-generalized metric spaces., Fixed Point Theory and Applications, 33-38.
- Cristescu R. (1983)., Order Structures in Normed Vector Spaces., Editura Ştiinţifică şi Enciclopedică, Bucureşti (in Romanian).
- Altun I., Sola F. and Simsek H. (2010)., Generalized contractions on partial metric spaces., Topology and its Applications, 157(18), 2778-2785.
- Collaço P. and Silva J.C.E. (1997)., A complete comparison of 25 contraction conditions., Nonlinear Analysis: Theory, Methods & Applications, 30(1), 471-476.
- Haghi R.H., Rezapour S. and Shahzad N. (2013)., Be careful on partial metric fixed point results., Topology and its Applications, 160(3), 450-454.
- Romaguera S. (2009)., A Kirk type characterization of completeness for partial metric spaces., Fixed Point Theory and Applications, 2010(1), 493298.
- Engelking R. (1989)., General Topology., Heldermann Verlag, Berlin.
- Frink A.H. (1937)., Distance functions and the metrization problems., Bull. Amer. Math. Soc., 43, 133-142.
- Heinonen J. (2001)., Lectures on analysis on metric spaces Universitext Springer-Verlag., New York x+, 140. Crossref MathSciNet ZentralBlatt Math.,
- Chaplain M.A.J., Erdmann K., MacIntyre A., Süli E., Tehranchi M.R. and Toland J.F. (2019)., Springer Undergraduate Mathematics Series., ISBN 978-1-84628-369-7.
- Sutherland W.A. (2009)., Introduction to metric and topological spaces., Oxford University Press., ISBN 978-0-19-956308-1.
- Bonk M. and Foertsch Th. (2006)., Asymptotic upper curvature bounds in coarse geometry., Math. Zeitschrift, 253(4), 753-785.
- Munkres J.R. (2000)., Topology., A First Course, 2nd ed. Upper Saddle River, NJ: Prentice-Hall.
- Rudin W. (1976)., Principles of Mathematical Analysis., 3rd ed. New York: McGraw-Hill.
- Munkres James (1999)., Topology., Prentice Hall; 2nd edition, ISBN 0-13-181629-2.