A unified approach to H-function and their applications in Distribution theory
Author Affiliations
- 1Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur 342005, India
- 2Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur 342005, India
Res. J. Mathematical & Statistical Sci., Volume 13, Issue (2), Pages 12-22, May,12 (2025)
Abstract
H-functions are an advanced type of hypergeometric functions with many useful properties. This paper is designed for the purpose of compiling the relationship of distribution functions with H functions. This paper explores H-functions and their importance in distribution theory. By using H-functions, we develop new formulas for PDFs (Probability Density Functions) and CDFs (Cumulative Distribution Functions) for various statistical distributions. Our method makes it easier to evaluate these functions and offers a solid framework for their use in solving complex statistical problems. We provide examples to show how H-functions can be applied to real-world statistical issues. This study highlights the value of H-functions as a powerful tool in distribution theory and encourages further research in this field.
References
- Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009)., The H-Function: Theory and Applications., Springer.
- Srivastava, H. M., Manocha, H. L. (1984)., A Treatise on Generating Functions., Halsted Press.
- Johnson, N. L., Kotz, S., & Kemp, A. W. (1992)., Univariate Discrete Distributions., John Wiley & Sons.
- Haight, F. A. (1967)., Handbook of the Poisson Distribution., John Wiley & Sons.
- Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000)., Continuous Multivariate Distributions., Volume 1: Models and Applications. John Wiley & Sons.
- Marshall, A. W., & Olkin, I. (1967)., A multivariate exponential distribution., Journal of the American Statistical Association, 62(317), 30-44.
- Mittal, P. K., & Kumar, S. (2015)., The HHH-function as a unifying approach for describing probability distributions., Journal of Applied Mathematics and Computation, 47(6), 785–795.
- Evans, M., Hastings, N., & Peacock, B. (2000)., Statistical Distributions., John Wiley & Sons.
- Gupta, R. C., & Kundu, D. (2001)., Generalized exponential distribution: Statistical properties and applications., Journal of Statistical Computation and Simulation, 69(2), 155–173.
- Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995)., Continuous univariate distributions., 2(2). John wiley & sons.
- DeGroot, M. H., & Schervish, M. J. (2012)., Probability and statistics, Fourth.,
- Hogg, R. V., McKean, J. W., & Craig, A. T. (2013)., Introduction to mathematical statistics., Pearson Education India.
- Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995)., Continuous Univariate Distributions., 2. John Wiley & Sons.
- Kilbas, A. A. (2004)., H-transforms: Theory and Applications., CRC press.
- Bishop, Y. M., Fienberg, S. E., & Holland, P. W. (2007)., Discrete multivariate analysis: Theory and practice., Springer Science & Business Media.
- Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979)., Multivariate Analysis., Academic Press.
- Johnson, R. A., & Wichern, D. W. (2007)., Applied Multivariate Statistical Analysis., Pearson Prentice Hall.
- Devroye, L. (2006)., Nonuniform random variate generation., Handbooks in operations research and management science, 13, 83-121.
- Grimmett, G., & Stirzaker, D. (2020)., Probability and random processes., Oxford university press.
- Mathai, A. M., & Saxena, R. K. (1978)., The H-function with applications in statistics and other disciplines., Wiley Eastern.
- Ross, S. M. (2014)., Introduction to probability models., Academic press.
- Mood, A. M. (1950)., Introduction to the Theory of Statistics.,
- Nelson, W. (1982)., Applied Life Data Analysis., John Wiley & Sons.
- Aitchison, J., & Brown, J. A. C. (1957)., The Lognormal Distribution., Cambridge University Press.
- Pareto, V. (1964)., Course in Political Economy (Vol. 1)., Librairie Droz.
- Gumbel, E. J. (1958)., Statistics of extremes., Columbia university press.
- Abernethy, R. B. (2006)., The New Weibull Handbook., Abernethy.
- Anderson-Cook, C. M. (2004)., An Introduction to Multivariate Statistical Analysis., Journal of the American Statistical Association, 99(467), 907-909.
- Feller, W. (1968)., An Introduction to Probability Theory and Its Applications., Volume I. Wiley.
- Fox, C. (1961)., The G and H functions as symmetrical Fourier kernels., Transactions of the American Mathematical Society, 98(3), 395-429.
- Hilbe, J. M. (2011)., Negative Binomial Regression., Cambridge University Press.
- Johnson, N. L., & Kotz, S. (1970)., Continuous Univariate Distributions-1~ Houghton Mifflin Company., New York.
- Kilbas, A. A. (2006)., Theory and applications of fractional differential equations., North-Holland Mathematics Studies, 204.
- Papoulis, A. (1965)., Random variables and stochastic processes., McGraw Hill.
- Prasad, Y. N., & Das, S. K. (2012)., The HHH-function distribution and its relationship to standard distributions., Communications in Statistics - Theory and Methods, 41(8), 1464–1475
- Snedecor, G. W., & Cochran, W. G. (1980)., Statistical methods. IOWA., Iowa State University Press.
- Srivastava, H. M., & Saxena, R. K. (2001)., Generating functions for a class of generalized hypergeometric functions., Integral Transforms and Special Functions, 12(3), 195–210.
- Student. (1908)., The probable error of a mean., Biometrika, 6(1), 1-25.