International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

A unified approach to H-function and their applications in Distribution theory

Author Affiliations

  • 1Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur 342005, India
  • 2Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur 342005, India

Res. J. Mathematical & Statistical Sci., Volume 13, Issue (2), Pages 12-22, May,12 (2025)

Abstract

H-functions are an advanced type of hypergeometric functions with many useful properties. This paper is designed for the purpose of compiling the relationship of distribution functions with H functions. This paper explores H-functions and their importance in distribution theory. By using H-functions, we develop new formulas for PDFs (Probability Density Functions) and CDFs (Cumulative Distribution Functions) for various statistical distributions. Our method makes it easier to evaluate these functions and offers a solid framework for their use in solving complex statistical problems. We provide examples to show how H-functions can be applied to real-world statistical issues. This study highlights the value of H-functions as a powerful tool in distribution theory and encourages further research in this field.

References

  1. Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009)., The H-Function: Theory and Applications., Springer.
  2. Srivastava, H. M., Manocha, H. L. (1984)., A Treatise on Generating Functions., Halsted Press.
  3. Johnson, N. L., Kotz, S., & Kemp, A. W. (1992)., Univariate Discrete Distributions., John Wiley & Sons.
  4. Haight, F. A. (1967)., Handbook of the Poisson Distribution., John Wiley & Sons.
  5. Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000)., Continuous Multivariate Distributions., Volume 1: Models and Applications. John Wiley & Sons.
  6. Marshall, A. W., & Olkin, I. (1967)., A multivariate exponential distribution., Journal of the American Statistical Association, 62(317), 30-44.
  7. Mittal, P. K., & Kumar, S. (2015)., The HHH-function as a unifying approach for describing probability distributions., Journal of Applied Mathematics and Computation, 47(6), 785–795.
  8. Evans, M., Hastings, N., & Peacock, B. (2000)., Statistical Distributions., John Wiley & Sons.
  9. Gupta, R. C., & Kundu, D. (2001)., Generalized exponential distribution: Statistical properties and applications., Journal of Statistical Computation and Simulation, 69(2), 155–173.
  10. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995)., Continuous univariate distributions., 2(2). John wiley & sons.
  11. DeGroot, M. H., & Schervish, M. J. (2012)., Probability and statistics, Fourth.,
  12. Hogg, R. V., McKean, J. W., & Craig, A. T. (2013)., Introduction to mathematical statistics., Pearson Education India.
  13. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995)., Continuous Univariate Distributions., 2. John Wiley & Sons.
  14. Kilbas, A. A. (2004)., H-transforms: Theory and Applications., CRC press.
  15. Bishop, Y. M., Fienberg, S. E., & Holland, P. W. (2007)., Discrete multivariate analysis: Theory and practice., Springer Science & Business Media.
  16. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979)., Multivariate Analysis., Academic Press.
  17. Johnson, R. A., & Wichern, D. W. (2007)., Applied Multivariate Statistical Analysis., Pearson Prentice Hall.
  18. Devroye, L. (2006)., Nonuniform random variate generation., Handbooks in operations research and management science, 13, 83-121.
  19. Grimmett, G., & Stirzaker, D. (2020)., Probability and random processes., Oxford university press.
  20. Mathai, A. M., & Saxena, R. K. (1978)., The H-function with applications in statistics and other disciplines., Wiley Eastern.
  21. Ross, S. M. (2014)., Introduction to probability models., Academic press.
  22. Mood, A. M. (1950)., Introduction to the Theory of Statistics.,
  23. Nelson, W. (1982)., Applied Life Data Analysis., John Wiley & Sons.
  24. Aitchison, J., & Brown, J. A. C. (1957)., The Lognormal Distribution., Cambridge University Press.
  25. Pareto, V. (1964)., Course in Political Economy (Vol. 1)., Librairie Droz.
  26. Gumbel, E. J. (1958)., Statistics of extremes., Columbia university press.
  27. Abernethy, R. B. (2006)., The New Weibull Handbook., Abernethy.
  28. Anderson-Cook, C. M. (2004)., An Introduction to Multivariate Statistical Analysis., Journal of the American Statistical Association, 99(467), 907-909.
  29. Feller, W. (1968)., An Introduction to Probability Theory and Its Applications., Volume I. Wiley.
  30. Fox, C. (1961)., The G and H functions as symmetrical Fourier kernels., Transactions of the American Mathematical Society, 98(3), 395-429.
  31. Hilbe, J. M. (2011)., Negative Binomial Regression., Cambridge University Press.
  32. Johnson, N. L., & Kotz, S. (1970)., Continuous Univariate Distributions-1~ Houghton Mifflin Company., New York.
  33. Kilbas, A. A. (2006)., Theory and applications of fractional differential equations., North-Holland Mathematics Studies, 204.
  34. Papoulis, A. (1965)., Random variables and stochastic processes., McGraw Hill.
  35. Prasad, Y. N., & Das, S. K. (2012)., The HHH-function distribution and its relationship to standard distributions., Communications in Statistics - Theory and Methods, 41(8), 1464–1475
  36. Snedecor, G. W., & Cochran, W. G. (1980)., Statistical methods. IOWA., Iowa State University Press.
  37. Srivastava, H. M., & Saxena, R. K. (2001)., Generating functions for a class of generalized hypergeometric functions., Integral Transforms and Special Functions, 12(3), 195–210.
  38. Student. (1908)., The probable error of a mean., Biometrika, 6(1), 1-25.