International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

On some Properties of -Beta Function associated with several Variables

Author Affiliations

  • 1Dept. of Mathematics M. L.V. Govt. PG College, Bhilwara, Rajasthan, India

Res. J. Mathematical & Statistical Sci., Volume 12, Issue (1), Pages 1-4, January,12 (2024)


Aim of this paper is to we will obtain the new interesting results on basis of the present research work with the help -Gamma and -Beta functions. We will derive the results related to -Beta function associated with several variables including -Gamma function. Applying multiple integral, we will obtain the results like Dirichlet’s theorem for multiple integral.


  1. Díaz, R., & Teruel, C. (2005)., q, k-Generalized gamma and beta functions. Journal of Nonlinear Mathematical Physics, 12(1), 118-134., undefined
  2. Diaz, R., & Pariguan, E. (2004).
  3. -symbol., arXiv preprint math/0405596.
  4. Rehman, A., Mubeen, S., Safdar, R., & Sadiq, N. (2015)., Properties of k-beta function with several variables., Open Mathematics, 13(1), 000010151520150030.
  5. Kokologiannaki, C. G. & Krasniqi, V. (2013)., Some properties of the k-gamma function., Le Matematiche, 68(1), 13-22.
  6. Kokologiannaki, C. G. (2010)., Properties and inequalities of generalized k-gamma, beta and zeta functions., Int. J. Contemp. Math. Sci, 5(14), 653-660.
  7. Bapna, I. B., & Prajapat, R. S. (2020)., Some Applications of Extension k-Gamma, k-Beta Functions and k-Beta Distribution., Journal of Ramanujan Society of Mathematics and Mathematical Sciences, 7(02), 83-98.
  8. Mubeen, S., Rehman, A., & Shaheen, F. (2014)., Properties of k-gamma, k-beta and k-psi functions., Bothalia Journal, 4, 371-379.
  9. W. S. (2016)., Some properties of k-gamma and k-beta functions., In ITM Web of Conferences, Vol. 7, 07003. EDP Sciences.
  10. Prajapat, R. S. & Bapna, I. B. (2023)., Some Properties of k-RIEMANN-Liouville Fractional Integral Operator., Journal of Ramanujan Society of Mathematics & Mathematical Sciences, 10(2).
  11. Mathai, A. M., & Haubold, H. J. (2008)., Special functions for applied scientists., Vol. 4. New York: Springer.
  12. Carlson B. C. (1997)., Special function of applied mathematics., Academic Press, New York