Renoprotective role of Ebselen on developmental renal toxicity following gestational Methylmercury exposure in Wistar rats
Author Affiliations
- 1Department of Zoology, Maharani Janki Kunwar College, Bettiah, West Champaran-845438, Bihar, India
- 2Department of Zoology, Mahatma Gandhi Central University, Motihari, East Champaran -845438, Bihar, India
- 3Department of Zoology, Maharani Janki Kunwar College, Bettiah, West Champaran-845438, Bihar, India
Res. J. of Pharmaceutical Sci., Volume 14, Issue (1), Pages 4-14, June,30 (2025)
Abstract
Methylmercury (MeHg) crosses the placental and blood-brain barriers, posing risks to neonates and adults. While its neurotoxic effects during gestation are well-documented, its impact on kidney development is less understood. This study explored the renal toxicity of gestational MeHg exposure (0.5 mg/kg and 5 mg/kg via oral gavages) from Gestational Day 4 to Post-Natal Day 1. MeHg exposure resulted in reduced body and kidney weights and elevated nephrotoxicity markers in serum and urine, indicating renal dysfunction. Histopathological analysis showed a decrease in cortical area and glomeruli count, reflecting impaired renal development. Molecular studies revealed upregulation of MMP9, a tissue injury marker, with alterations in Nephrin, Villin, and GDNF expression, essential for renal function and growth. Hypomethylation of the MMP9 promoter, confirmed by ChIP-PCR, suggested epigenetic dysregulation as a mechanism of toxicity. Ebselen, an antioxidant, demonstrated renoprotective effects by restoring cortical area and glomeruli count, normalizing nephrotoxicity markers, and reducing MMP9 expression. Ebselen's effects were linked to increased MMP9 promoter methylation, countering MeHg-induced epigenetic changes. These findings highlight Ebselen’s potential to mitigate oxidative stress and epigenetic disruptions, making it a promising therapeutic agent to address developmental renal toxicity caused by gestational MeHg exposure.
References
- Mania, M., Wojciechowska-Mazurek, M., Starska, K., Rebeniak, M., & Postupolski, J. (2012)., Ryby i owoce morza jako źródło narazenia człowieka na metylorteć [Fish and seafood as a source of human exposure to methylmercury]., Roczniki Panstwowego Zakladu Higieny, 63(3), 257–264.
- Myers, G. J., & Davidson, P. W. (2000)., Does methylmercury have a role in causing developmental disabilities in children?., Environmental health perspectives, 108 Suppl 3(Suppl 3), 413–420.
- Castoldi, A. F., Johansson, C., Onishchenko, N., Coccini, T., Roda, E., Vahter, M., Ceccatelli, S., & Manzo, L. (2008)., Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers., Regulatory toxicology and pharmacology : RTP, 51(2), 201–214.
- Spulber, S., Rantamäki, T., Nikkilä, O., Castrén, E., Weihe, P., Grandjean, P., & Ceccatelli, S. (2010)., Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum., Toxicological sciences: an official journal of the Society of Toxicology, 117(2), 263–269.
- Zhang, Y., & Pardridge, W. M. (2006)., Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion., Brain research, 1111(1), 227–229.
- González-Estecha, M., Bodas-Pinedo, A., Guillén-Pérez, J. J., Rubio-Herrera, M. Á., Ordóñez-Iriarte, J. M., Trasobares-Iglesias, E. M., Martell-Claros, N., Martínez-Álvarez, J. R., Farré-Rovira, R., Herráiz-Martínez, M. Á., Martínez-Astorquiza, T., Calvo-Manuel, E., Sáinz-Martín, M., Bretón-Lesmes, I., Prieto-Menchero, S., Llorente-Ballesteros, M. T., Martínez-García, M. J., Salas-Salvadó, J., Bermejo-Barrera, P., García-Donaire, J. A., … Calle-Pascual, A. (2014)., Exposición al metilmercurio en la población general; toxicocinética; diferencias según el sexo, factores nutricionales y genéticos [Methylmercury exposure in the general population; toxicokinetics; differences by gender, nutritional and genetic factors]., Nutricion hospitalaria, 30(5), 969–988.
- Bohets, H. H., Van Thielen, M. N., Van der Biest, I., Van Landeghem, G. F., D, Cytotoxicity of mercury compounds in LLC-PK1, MDCK and human proximal tubular cells., Kidney international, 47(2), 395–403.
- Jin, H., Xie, Q., Guo, X., Xu, J., Wang, A., Li, J., Zhu, J., Wu, X. R., Huang, H., & Huang, C. (2017)., p63α protein up-regulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion., The Journal of biological chemistry, 292(38), 15952–15963.
- Álvarez-Errico, D., Vento-Tormo, R., Sieweke, M., & Ballestar, E. (2015)., Epigenetic control of myeloid cell differentiation, identity and function., Nature reviews. Immunology, 15(1), 7–17.
- Vento-Tormo, R., Álvarez-Errico, D., Rodríguez-Ubreva, J., & Ballestar, E. (2015)., Gains of DNA methylation in myeloid terminal differentiation are dispensable for gene silencing but influence the differentiated phenotype., The FEBS journal, 282(9), 1815–1825.
- Romero-Fernández, I., Casas-Delucchi, C. S., Cano-Linares, M., Arroyo, M., Sánchez, A., Cardoso, M. C., & Marchal, J. A. (2015)., Epigenetic modifications in sex heterochromatin of vole rodents., Chromosoma, 124(3), 341–351.
- Boyes, J., & Bird, A. (1992)., Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein., The EMBO journal, 11(1), 327–333.
- Leonhardt, H., & Cardoso, M. C. (2000)., DNA methylation, nuclear structure, gene expression and cancer., Journal of cellular biochemistry. Supplement, Suppl 35, 78–83.
- Sánchez-Martín, F. J., Lindquist, D. M., Landero-Figueroa, J., Zhang, X., Chen, J., Cecil, K. M., Medvedovic, M., & Puga, A. (2015)., Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead., Neurotoxicology, 46, 92–100.
- Temiz, N. A., Donohue, D. E., Bacolla, A., Luke, B. T., & Collins, J. R. (2012)., The role of methylation in the intrinsic dynamics of B- and Z-DNA., PloS one, 7(4), e35558.
- Hayashi, K., & Itoh, H. (2015)., Transcription factors and epigenetic modulation: its therapeutic implication in chronic kidney disease., Archivum immunologiae et therapiae experimentalis, 63(3), 193–196.
- Hayashi, K., Hishikawa, A., & Itoh, H. (2016)., DNA Damage and Epigenetic Changes in Kidney Diseases - Focused on Transcription Factors in Podocytes., Current hypertension reviews, 12(2), 105–111.
- Jessop, P., Ruzov, A., & Gering, M. (2018)., Developmental Functions of the Dynamic DNA Methylome and Hydroxymethylome in the Mouse and Zebrafish: Similarities and Differences., Frontiers in cell and developmental biology, 6, 27.
- Rakoczy, J., Padmanabhan, N., Krzak, A. M., Kieckbusch, J., Cindrova-Davies, T., & Watson, E. D. (2017)., Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation., Placenta, 59, 46–56.
- Dai, H. Q., Wang, B. A., Yang, L., Chen, J. J., Zhu, G. C., Sun, M. L., Ge, H., Wang, R., Chapman, D. L., Tang, F., Sun, X., & Xu, G. L. (2016)., TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling., Nature, 538(7626), 528–532.
- Guibert, S., & Weber, M. (2013)., Functions of DNA methylation and hydroxymethylation in mammalian development., Current topics in developmental biology, 104, 47–83.
- Livak, K. J., & Schmittgen, T. D. (2001)., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method., Methods (San Diego, Calif.), 25(4), 402–408.
- Noguchi N. (2016). 3Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases., Archives of biochemistry and biophysics, 595, 109–112., undefined
- Meinerz, D. F., Branco, V., Aschner, M., Carvalho, C., & Rocha, J. B. T. (2017)., Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen., Journal of applied toxicology: JAT, 37(9), 1073–1081.
- de Freitas, A. S., Funck, V. R., Rotta, M.dosS., Bohrer, D., Mörschbächer, V., Puntel, R. L., Nogueira, C. W., Farina, M., Aschner, M., & Rocha, J. B. (2009)., Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice., Brain research bulletin, 79(1), 77–84.
- Rudgalvyte, M., Peltonen, J., Lakso, M., & Wong, G. (2017)., Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans., Comparative biochemistry and physiology. Toxicology & pharmacology: CBP, 191, 109–116.
- Pingree, S. D., Simmonds, P. L., & Woods, J. S. (2001)., Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on tissue and urine mercury levels following prolonged methylmercury exposure in rats., Toxicological sciences: an official journal of the Society of Toxicology, 61(2), 224–233.
- Gilbert, T., Leclerc, C., & Moreau, M. (2011)., Control of kidney development by calcium ions., Biochimie, 93(12), 2126–2131.
- Costantini, F., & Shakya, R. (2006)., GDNF/Ret signaling and the development of the kidney., BioEssays: news and reviews in molecular, cellular and developmental biology, 28(2), 117–127.
- Ying, Q., & Wu, G. (2017)., Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update., Renal failure, 39(1), 474–483.
- Ruotsalainen, V., Ljungberg, P., Wartiovaara, J., Lenkkeri, U., Kestilä, M., Jalanko, H., Holmberg, C., & Tryggvason, K. (1999)., Nephrin is specifically located at the slit diaphragm of glomerular podocytes., Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7962–7967.
- Decuypere, J. P., Ceulemans, L. J., Wylin, T., Martinet, W., Monbaliu, D., Pirenne, J., & Jochmans, I. (2017)., Plasmatic Villin 1 Is a Novel In Vivo Marker of Proximal Tubular Cell Injury During Renal Ischemia-Reperfusion., Transplantation, 101(11), e330–e336.
- Ding, F., Wickman, L., Wang, S. Q., Zhang, Y., Wang, F., Afshinnia, F., Hodgin, J., Ding, J., & Wiggins, R. C. (2017)., Accelerated podocyte detachment and progressive podocyte loss from glomeruli with age in Alport Syndrome., Kidney international, 92(6), 1515–1525.
- Sagare, A. P., Bell, R. D., Zhao, Z., Ma, Q., Winkler, E. A., Ramanathan, A., & Zlokovic, B. V. (2013)., Pericyte loss influences Alzheimer-like neurodegeneration in mice., Nature communications, 4, 2932. https://doi.org/10.1038/ncomms3932 (Retraction published Nat Commun. 2024 Apr 3;15(1), 2882. doi: 10.1038/s41467-024-47285-6.)1