Application of Nanotechnology in Textiles: A Review
Author Affiliations
- 1Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 2Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 3Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 4Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 5Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 6Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 7Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 8Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
- 9Tangail Textile Engineering College, Kalihati, Tangail, Bangladesh
Res. J. Engineering Sci., Volume 14, Issue (2), Pages 1-14, May,26 (2025)
Abstract
Nanotechnology has significantly transformed the textile sector, offering innovative solutions in both anticipated and novel ways. This review discusses the preparation of nanofibers using various methods, the types of nanofibers, and their wide-ranging applications in textiles. Among the preparation methods, electrospinning is the most widely used, alongside others such as melt-blowing, and phase separation. Nanofibers are categorized into four sources: polysaccharide-based, synthetic-based, carbon-based, and protein-based. The extensive application of nanotechnology in the textile industry is remarkable, encompassing areas such as water repellence, antistatic properties, wrinkle resistance, strength enhancement, UV protection, computing, odor control, optical displays, soil and stain repellence, anti-creasing, antibacterial properties, self-cleaning, thermal regulation, comfort, electronic textiles, medical dressings, home furnishings, food packaging, and cosmetics.
References
- Salman, A., Metwally, F. A., Elbisi, M., & Emara, G. A. M. (2020)., Applications of nanotechnology and advancements in smart wearable textiles: An overview., Egyptian Journal of Chemistry, 63(6), 2177–2184.
- Frenot, A., & Chronakis, I. S. (2003)., Polymer nanofibers assembled by electrospinning., Current opinion in colloid & interface science, 8(1), 64-75.
- Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., ... & Yun, S. H. (2016)., Nanotechnology in textiles., ACS nano, 10(3), 3042-3068.
- Paneysar, J. S., Sawant, S., Ip, M. H., Bhullar, S. K., Barton, S., Ambre, P., & Coutinho, E. (2019)., Nanofibers for textile waste water management., Water Practice & Technology, 14(2), 297-310.
- de Morais Teixeira, E., Corrêa, A. C., Manzoli, A., de Lima Leite, F., de Oliveira, C. R., & Mattoso, L. H. C. (2010)., Cellulose nanofibers from white and naturally colored cotton fibers., Cellulose, 17(3), 595-606.
- Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020)., Nanocellulose: from fundamentals to advanced applications., Frontiers in chemistry, 8, 392.
- Mokhena, T. C., & John, M. J. (2020)., Cellulose nanomaterials: New generation materials for solving global issues., Cellulose, 27, 1149-1194.
- Santana, J. S., do Rosário, J. M., Pola, C. C., Otoni, C. G., de Fátima FerreiraSoares, N., Camilloto, G. P., & Cruz, R. S. (2017)., Cassava starch‐based nanocomposites reinforced with cellulose nanofibers extracted from sisal., Journal of applied polymer science, 134(12).
- Kalb, B. A. J. P., & Pennings, A. J. (1980)., General crystallization behaviour of poly (L-lactic acid)., Polymer, 21(6), 607-612.
- Soni, S., Gupta, H., Kumar, N., Nishad, D. K., Mittal, G., & Bhatnagar, A. (2010)., Biodegradable biomaterials., Recent Patents on Biomedical Engineering (Discontinued), 3(1), 30-40.
- MacDiarmid, A. G., & Epstein, A. J. (1994)., The concept of secondary doping as applied to polyaniline., Synthetic metals, 65(2-3), 103-116.
- Gupta, A. K., Paliwal, D. K., & Bajaj, P. (1998)., Melting behavior of acrylonitrile polymers., Journal of applied polymer science, 70(13), 2703-2709.
- Otsuka, K., Takenaka, S., & Ohtsuki, H. (2004)., Production of pure hydrogen by cyclic decomposition of methane and oxidative elimination of carbon nanofibers on supported-Ni-based catalysts., Applied Catalysis A: General, 273(1-2), 113-124.
- Mourya, V. K., & Inamdar, N. N. (2008)., Chitosan-modifications and applications: Opportunities galore., Reactive and Functional polymers, 68(6), 1013-1051.
- Duca, L., Floquet, N., Alix, A. J., Haye, B., & Debelle, L. (2004)., Elastin as a matrikine., Critical reviews in oncology/hematology, 49(3), 235-244.
- Yıldız, A., Kara, A. A., & Acartürk, F. (2020)., Peptide-protein based nanofibers in pharmaceutical and biomedical applications., International journal of biological macromolecules, 148, 1084-1097.
- Arun, A., Malrautu, P., Laha, A., & Ramakrishna, S. (2021)., Gelatin nanofibers in drug delivery systems and tissue engineering., Engineered Science, 16(22), 71-81.
- Kasaai, M. R. (2018)., Zein and zein-based nano-materials for food and nutrition applications: A review., Trends in Food Science & Technology, 79, 184-197.
- Almetwally, A. A., El-Sakhawy, M., Elshakankery, M. H., & Kasem, M. H. (2017)., Technology of nano-fibers: Production techniques and properties-Critical review., J. Text. Assoc, 78(1), 5-14.
- Wu, S., Dong, T., Li, Y., Sun, M., Qi, Y., Liu, J., ... & Duan, B. (2022)., State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications., Applied materials today, 27, 101473.
- Shin, Y. M., Hohman, M. M., Brenner, M. P., & Rutledge, G. C. (2001)., Experimental characterization of electrospinning: the electrically forced jet and instabilities., Polymer, 42(25), 09955-09967.
- Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000)., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning., Journal of Applied physics, 87(9), 4531-4547.
- Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001)., Bending instability in electrospinning of nanofibers., Journal of Applied Physics, 89(5), 3018–3026.
- Alghoraibi, I., & Alomari, S. (2020)., Handbook of Nanofibers., In Handbook of Nanofibers (Issue May).
- Almetwally, A. A., El-Sakhawy, M., Elshakankery, M. H., & Kasem, M. H. (2017)., Technology of nano-fibers: Production techniques and properties - Critical review., Journal of the Textile Association, 78(1), 5–14.
- Zhang, X., & Lu, Y. (2014)., Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost., Polymer Reviews, 54(4), 677–701.
- Drabek, J., & Zatloukal, M. (2019)., Meltblown technology for production of polymeric microfibers/nanofibers: A review., Physics of Fluids, 31(9).
- Nayak, R., Kyratzis, I. L., Truong, Y. B., Padhye, R., & Arnold, L. (2015)., Structural and mechanical properties of polypropylene nanofibres fabricated by meltblowing., The Journal of The Textile Institute, 106(6), 629-640.
- Nayak, R., Kyratzis, I. L., Truong, Y. B., Padhye, R., Arnold, L., Peeters, G., ... & Nichols, L. (2013)., Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids., Journal of Materials Science, 48, 273-281.
- Hiremath, N., & Bhat, G. (2015)., Melt blown polymeric nanofibers for medical applications-an overview., Nanosci Technol, 2(1), 1-9.
- Verma, A., Arif, R., & Jadoun, S. (2020)., Synthesis, characterization, and application of modified textile nanomaterials.3 Frontiers of Textile materials: Polymers, nanomaterials, enzymes, and advanced modification techniques, 167-187., undefined
- Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., ... & Yun, S. H. (2016)., Nanotechnology in textiles., ACS nano, 10(3), 3042-3068.
- Idumah, C. I. (2021)., Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19.3 The Journal of the Textile Institute, 112(12), 2056-2076., undefined
- Wang, R., Xin, J. H., Tao, X. M., & Daoud, W. A. (2004)., ZnO nanorods grown on cotton fabrics at low temperature., Chemical Physics Letters, 398(1-3), 250-255.
- Chowdhury, N., & Das, S. C. (2013)., Application of nanotechnology in textiles: a review., In Conference: international conference on mechanical engineering and renewable energy, at CUET, Chittagong, Bangladesh.
- Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., & Yun, S. H. (2016)., Nanotechnology in Textiles., In ACS Nano, 10(3), 3042–3068.
- Wang, D., Lin, Y., Zhao, Y., & Gu, L. (2004)., Polyacrylonitrile fibers modified by nano-antimony-doped tin oxide particles., Textile research journal, 74(12), 1060-1065.
- Ambekar, R. S., & Kandasubramanian, B. (2019)., Advancements in nanofibers for wound dressing: A review., European Polymer Journal, 117, 304-336.
- Zhu, L., Liu, X., Du, L., & Jin, Y. (2016)., Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury., Biomedicine & Pharmacotherapy, 83, 33-40.
- Abdelgawad, A. M., Hudson, S. M., & Rojas, O. J. (2014)., Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems., Carbohydrate polymers, 100, 166-178.
- Fadil, F., Affandi, N. D. N., Misnon, M. I., Bonnia, N. N., Harun, A. M., & Alam, M. K. (2021)., Review on electrospun nanofiber-applied products., Polymers, 13(13), 2087.
- Ibrahim, H. M., & Klingner, A. (2020)., A review on electrospun polymeric nanofibers: Production parameters and potential applications., Polymer Testing, 90, 106647. https://doi.org/10.1016/j.polymertesting.2020.106647
- Verma, A., Arif, R., & Jadoun, S. (2020)., Synthesis, characterization, and application of modified textile nanomaterials., Frontiers of Textile materials: Polymers, nanomaterials, enzymes, and advanced modification techniques, 167-187.
- Abid, S., Hussain, T., Nazir, A., Zahir, A., & Khenoussi, N. (2019)., A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds., Polymer Bulletin, 76, 6387-6411.
- Sumin, L., Kimura, D., Lee, K. H., Park, J. C., & Kim, I. S. (2010)., The effect of laundering on the thermal and water transfer properties of mass-produced laminated nanofiber web for use in wear., Textile Research Journal, 80(2), 99-105.
- Ghaffari, S., Yousefzadeh, M., & Mousazadegan, F. (2019)., Investigation of thermal comfort in nanofibrous three‐layer fabric for cold weather protective clothing., Polymer Engineering & Science, 59(10), 2032-2040.
- Demir, B., Cerkez, I., Worley, S. D., Broughton, R. M., & Huang, T. S. (2015)., N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria., ACS applied materials & interfaces, 7(3), 1752-1757.
- Fadil, F., Affandi, N. D. N., Misnon, M. I., Bonnia, N. N., Harun, A. M., & Alam, M. K. (2021)., Review on electrospun nanofiber-applied products., Polymers, 13(13), 2087.
- Fathi-Azarbayjani, A., Qun, L., Chan, Y. W., & Chan, S. Y. (2010)., Novel vitamin and gold-loaded nanofiber facial mask for topical delivery.3 Aaps Pharmscitech, 11, 1164-1170., undefined
- Comiskey, B., Albert, J. D., Yoshizawa, H., & Jacobson, J. (1998)., An electrophoretic ink for all-printed reflective electronic displays., Nature, 394(6690), 253-255.
- Huang, Y., Duan, X., & Lieber, C. M. (2005)., Nanowires for integrated multicolor nanophotonics., Small, 1(1), 142-147.
- Yu, H., Liao, D., Johnston, M. B., & Li, B. (2011)., All-optical full-color displays using polymer nanofibers., Acs Nano, 5(3), 2020-2025.
- Rong, L., Liu, H., Wang, B., Mao, Z., Xu, H., Zhang, L., ... & Sui, X. (2019)., Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds., Carbohydrate polymers, 211, 173-180.
- Huang, K. S., Wu, W. J., Chen, J. B., & Lian, H. S. (2008)., Application of low-molecular-weight chitosan in durable press finishing., Carbohydrate Polymers, 73(2), 254-260.
- Nawab, Y., & Shaker, K. (Eds.). (2023)., Textile engineering: an introduction., Walter de Gruyter GmbH & Co KG.
- Gayathri, D., & Karthika, S. P. Stain-Resistant Finish Using Nanotechnology. Nano Electronic Science and Technology., undefined, undefined
- Da-Jeng Yao, J. (2018)., Guest editorial: Selected papers from the 13th annual IEEE international conference on nano/Micro engineered and molecular systems (IEEE-NEMS 2018)., Micro and Nano Letters, 13(11), 1510.
- Siddiqui, S., Kim, D. Il, Roh, E., Duy, L. T., Trung, T. Q., Nguyen, M. T., & Lee, N. E. (2016)., A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system., Nano Energy, 30, 434–442.
- Serrano-Garcia, W., Jayathilaka, W. A. D. M., Chinnappan, A., Tran, T. Q., Baskar, C., Thomas, S. W., & Ramakrishna, S. (2019)., Nanocomposites for electronic applications that can be embedded for textiles and wearables., In Science China Technological Sciences, 62(6), 895–902. Springer Verlag.
- Jin, H., Nayeem, M. O. G., Lee, S., Matsuhisa, N., Inoue, D., Yokota, T., Hashizume, D., & Someya, T. (2019)., Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles., ACS Nano, 13(7), 7905–7912.
- Perdigão, P., Faustino, B. M. M., Faria, J., Canejo, J. P., Borges, J. P., Ferreira, I., & Baptista, A. C. (2020)., Conductive electrospun Polyaniline/Polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textiles., Fibers, 8(4).
- Wu, S., Liu, P., Zhang, Y., Zhang, H., & Qin, X. (2017)., Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices., Sensors and Actuators, B: Chemical, 252, 697–705.
- Cherenack, K., Zysset, C., Kinkeldei, T., Münzenrieder, N., & Tröster, G. (2010)., Woven electronic fibers with sensing and display functions for smart textiles., Advanced Materials, 22(45), 5178–5182.
- Wu, S., Liu, P., Zhang, Y., Zhang, H., & Qin, X. (2017)., Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices., Sensors and Actuators, B: Chemical, 252, 697–705.
- Lee, Y. H., Kim, J. S., Noh, J., Lee, I., Kim, H. J., Choi, S., Seo, J., Jeon, S., Kim, T. S., Lee, J. Y., & Choi, J. W. (2013)., Wearable textile battery rechargeable by solar energy., Nano Letters, 13(11), 5753–5761.
- O’Connor, B., An, K. H., Zhao, Y., Pipe, K. P., &Shtein, M. (2007)., Fiber shaped organic light emitting device., Advanced Materials, 19(22), 3897–3900.
- Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., & Itoh, T. (2012)., Fabric pressure sensor array fabricated with die-coating and weaving techniques., Sensors and Actuators, A: Physical, 184, 57–63.
- Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016)., Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles., Desalination and Water Treatment, 57(54), 26003–26013.
- Lozano, K., Bonilla-Rios, J., & Barrera, E. V. (2001)., A Study on Nanofiber-Reinforced Thermoplastic Composites (II): Investigation of the Mixing Rheology and Conduction Properties., In J Appl Polym Sci, 80.
- Sazegar, M., Bazgir, S., & Katbab, A. A. (2020)., Preparation and characterization of water-absorbing gas-assisted electrospun nanofibers based on poly(vinyl alcohol)/chitosan., Materials Today Communications, 25.
- Niknejad, A. S., Bazgir, S., Sadeghzadeh, A., & Shirazi, M. M. A. (2020)., Styrene-acrylonitrile (SAN) nanofibrous membranes with unique properties for desalination by direct contact membrane distillation (DCMD) process., Desalination, 488.
- Hosne Asif, A. K. M. A., & Hasan, Md. Z. (2018)., Application of Nanotechnology in Modern Textiles: A Review., International Journal of Current Engineering and Technology, 8(02).Mihindukulasuriya, S. D. F., & Lim, L. T. (2014).
- Hongrattanavichit, I., & Aht-Ong, D. (2021)., Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers., Industrial Crops and Products, 171.
- Hou, L., Wang, N., Wu, J., Cui, Z., Jiang, L., & Zhao, Y. (2018)., Bioinspired Superwettability Electrospun Micro/ Nanofibers and their applications., In Advanced Functional Materials, 28(49). Wiley-VCH Verlag.
- Nishimoto, S., & Bhushan, B. (2013)., Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity., In RSC Advances, 3(3), 671–690.
- Arabatzis, I., Todorova, N., Fasaki, I., Tsesmeli, C., Peppas, A., Li, W. X., & Zhao, Z. (2018)., Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions., Solar Energy, 159, 251–259.
- Geyer, F., Sharifi-Aghili, A., Saal, A., Gao, N., Kaltbeitzel, A., Sloot, T.-F., Berger, R., Butt, H.-J., & Vollmer, D. (2020)., When and how self-cleaning of superhydrophobic surfaces works.,
- Winninger, J., Iurea, D. M., Atanase, L. I., Salhi, S., Delaite, C., & Riess, G. (2019)., Micellization of novel biocompatible thermo-sensitive graft copolymers based on poly(ε-caprolactone), poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone)., European Polymer Journal, 119, 74–82.
- Gautam, B., & Yu, H. H. (2020)., Self-cleaning cotton obtained after grafting thermoresponsive poly(N-vinylcaprolactam) through surface-initiated atom transfer radical polymerization., Polymers, 12(12), 1–12.
- Ghaffari, S., Yousefzadeh, M., & Mousazadegan, F. (2019)., Investigation of thermal comfort in nanofibrous three-layer fabric for cold weather protective clothing., Polymer Engineering and Science, 59(10), 2032–2040.
- Hassan, B. S., Islam, G. M. N., & Haque, A. N. M. A. (2019)., Applications of nanotechnology in textiles: A review., Adv. Res. Text. Eng, 4(2), 1038.
- Gibson, P. W., Lee, C., Ko, F., & Reneker, D. (2007)., Application of nanofiber technology to nonwoven thermal insulation., Journal of Engineered Fibers and Fabrics, 2(2), 155892500700200204.
- Jadoun, S., Verma, A., & Arif, R. (2020)., Modification of textiles via nanomaterials and their applications., Frontiers of textile materials: polymers, nanomaterials, enzymes, and advanced modification techniques, 135-152.
- Mahmud, R., & Nabi, F. (2017)., Application of nanotechnology in the field of textile., IOSR J Polym Text Eng, 4(1), 2181-2348p