International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Study of the replacement of HFO and DDO power plants with optimized hybrid PV/LNG power plant for energy transition in Burkina Faso

Author Affiliations

  • 1Laboratoire de Recherche en Métrologie de l’Espace et Energétique, University Norbert ZONGO of Koudougou, Burkina Faso
  • 2Laboratoire de Recherche en Métrologie de l’Espace et Energétique, University Norbert ZONGO of Koudougou, Burkina Faso
  • 3Department of Electrical Engineering, Institut Universitaire de Technologie, University Nazi Boni of Bobo-Dioulasso,01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
  • 4Department of Electrical Engineering, Institut Universitaire de Technologie, University Nazi Boni of Bobo-Dioulasso,01 BP 1091 Bobo-Dioulasso 01, Burkina Faso

Res. J. Engineering Sci., Volume 13, Issue (3), Pages 19-26, September,26 (2024)

Abstract

This article presents the replacement feasibility study in the Burkina Faso’s energy mix, the power plants operating on HFO by PV/LNG hybrid power plant and without electrical energy storage. The study is carried out aiming for balance between electricity needs and supply what is being sough there is hybrid PV/LNG power plant electricity kWh cost minimization. The optimal cost of kWh of electricity is obtained by calculating the electricity levelized cost. Simulations results shows that the addition of 300 MW from PV/LNG hybrid power plant in the Burkina Faso’s electricity system allows solving electrical power deficit problem with a surplus of 884 MW at day and 389 MW at night, by 2030. On this same horizon, the energy mix cost will drop to below 0.098 $/kWh. The PV/LNG hybrid system gives a very competitive kWh cost compared to other sources. The PV/LNG hybrid power plant can well replace thermal power plants running on HFO during the energy transition.

References

  1. Christian Bogmans et Claire Mengyi Li (2020)., Pour un avenir plus vert: passer du charbon aux énergies de substitution., Énergie renouvelable.
  2. Allan, B., Lewis, J. I., & Oatley, T. (2021)., Green industrial policy and the global transformation of climate politics., Global environmental politics, 21(4), 1-19.
  3. Kemp, R., & Never, B. (2017)., Green transition, industrial policy, and economic development., Oxford Review of Economic Policy, 33(1), 66-84.
  4. Daud, A. K., & Ismail, M. S. (2012)., Design of isolated hybrid systems minimizing costs and pollutant emissions., Renewable energy, 44, 215-224.
  5. Zhou, T. (2009)., Commande et Supervision Energétique d’un Générateur Hybride Actif Eolien incluant du Stockage sous forme d’Hydrogène et des Super-Condensateurs pour l’Intégration dans le Système Electrique d’un Micro Réseau (Doctoral dissertation, Ecole centrale de Lille).,
  6. Canziani, F., Vargas, R., & Gastelo-Roque, J. A. (2021)., Hybrid photovoltaic-wind microgrid with battery storage for rural electrification: A case study in Perú., frontiers in energy research, 8, 528571.
  7. Khan, F. A., Pal, N., & Saeed, S. H. (2021)., Stand-alone hybrid system of solar photovoltaics/wind energy resources: an eco-friendly sustainable approach. In Renewable Energy Systems (pp. 687-705). Academic Press.,
  8. Ouedraogo, S., Ajavon, A. S. A., Kodjo, M. K., Salami, A. A., & Bedja, K. S. (2018)., Optimality sizing of hybrid electrical power plant composed of photovoltaic generator, wind generator and biogas generator., Research Journal of Engineering Sciences, 7(11), 20-53.
  9. Ramoji, S. K., Rath, B. B., & Kumar, D. V. (2014)., Optimization of hybrid PV/wind energy system using genetic algorithm (GA)., Journal of engineering research and applications, 4, 29-37.
  10. Emad, D., El-Hameed, M. A., & El-Fergany, A. A. (2021)., Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area., Energy Conversion and Management, 249, 114847.
  11. Benlahbib, B., Bouarroudj, N., Mekhilef, S., Abdeldjalil, D., Abdelkrim, T., & Bouchafaa, F. (2020)., Experimental investigation of power management and control of a PV/wind/fuel cell/ battery hybrid energy system microgrid., International Journal of Hydrogen Energy, 45(53), 29110-29122.
  12. Wang, Z., Wen, X., Tan, Q., Fang, G., Lei, X., Wang, H., & Yan, J. (2021)., Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale., Renewable and Sustainable Energy Reviews, 146, 111154.
  13. Bouharchouche, A., Berkouk, E. M., & Ghennam, T. (2013)., Control and energy management of a grid connected hybrid energy system PV-wind with battery energy storage for residential applications., In 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER) (pp. 1-11). IEEE.
  14. SONABEL (Société Nationale Burkinabè d’Electricité), Direction des Energie renouvelables (2022)., Projet de centrales solaires photovoltaïque., Fiche technique, gouvernement du Burkina Faso, Ouagadougou, Burkina Faso.
  15. Cacciari, J. (2015)., L’impératif de «transition énergétique» comme double peine pour un territoire de la production énergétique soumis à reconversion., VertigO-la revue électronique en sciences de l
  16. Lee, A., Zinaman, O., & Logan, J. (2012)., Opportunities for synergy between natural gas and renewable energy in the electric power and transportation sectors (No. NREL/TP-6A50-56324)., National Renewable Energy Lab.(NREL), Golden, CO (United States).
  17. Miles, A., Khemis, O., & Merabet, A. (2009)., Optimisation des cycles de liquéfaction du gaz naturel (Doctoral dissertation, Université Frères Mentouri-Constantine 1).,
  18. Austvik, O. G. (2000)., Economics of natural gas transportation. HiL;, Lillehammer college: Research report, no 53.
  19. Molnar, G. (2022)., Economics of gas transportation by pipeline and LNG., In The Palgrave handbook of international energy economics (pp. 23-57). Cham: Springer International Publishing.
  20. PNDES: Plan National de Développement Economique et Social (2020)., Politique Sectorielle de l’Energie 2020-2024., Gouvernement du Burkina Faso, Journal Officiel, JO (52).
  21. Benito, A. (2009)., Accurate determination of LNG quality unloaded in Receiving Terminals: An Innovative approach., GERG academic network event, Brussels, Belgium, 1-23.
  22. Dupont, N. (2010)., Valorisation du biogaz de fermentation: combustion catalytique, (Doctoral dissertation, Université Claude Bernard-Lyon I).
  23. Sidibe, S. (2011)., Contribution à l,
  24. Nguewo, D. Y. (2012)., Experimentation et optimisation d,
  25. Moussa Tissologo, Seydou Ouedraogo, Ratousiri Arnaud Abdel Aziz Valea, Fréderic Ouattara, Ayité Senah Akoda Ajavon (2022)., Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso., International Journal of Energy and Power Engineering, 11(2), 47-55.
  26. Jordehi, A. R. (2016)., Parameter estimation of solar photovoltaic (PV) cells: A review., Renewable and Sustainable Energy Reviews, 61, 354-371.
  27. Brano, V. L., Orioli, A., & Ciulla, G. (2012)., On the experimental validation of an improved five-parameter model for silicon photovoltaic modules., Solar Energy Materials and Solar Cells, 105, 27-39.
  28. Mares, O., Paulescu, M., & Badescu, V. (2015)., A simple but accurate procedure for solving the five-parameter model., Energy Conversion and Management, 105, 139-148.
  29. Boutana, N., Mellit, A., Haddad, S., Rabhi, A., & Pavan, A. M. (2017)., An explicit IV model for photovoltaic module technologies., Energy Conversion and Management, 138, 400-412.
  30. Khan, F., Baek, S. H., Park, Y., & Kim, J. H. (2013)., Extraction of diode parameters of silicon solar cells under high illumination conditions., Energy conversion and management, 76, 421-429.
  31. Ruschel, C. S., Gasparin, F. P., Costa, E. R., & Krenzinger, A. (2016)., Assessment of PV modules shunt resistance dependence on solar irradiance., Solar Energy, 133, 35-43.
  32. Bouharchouche, A., Bouabdallah, A., Berkouk, E. M., Diaf, S., & Belmili, H. (2014)., Conception et réalisation d’un logiciel de dimensionnement d’un système d’énergie hybride éolien-photovoltaïque., Journal of Renewable Energies, 17(3), 359-376.
  33. Bélanger-Gravel, J. (2012)., Analyse technico-économique d, Ecole Polytechnique, Montreal (Canada).
  34. F., & Ajavon, A. S. A. (2022)., Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso., International Journal of Energy and Power Engineering, 9(4), 47-55.
  35. KY J. B., Tissologo M., Ouedraogo S., Nikiema O., Ouattara F. (2023)., Comparative Study of Electricity Production Cost of Energy Mix of Burkina Faso., International Journal of Trend in Scientific Research and Development (ijtsrd), 7(6), 29-36.