International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

From waste to energy and fertilizer: Optimizing laying hen manure valorization via anaerobic digestion and composting in Benin Republic, West Africa

Author Affiliations

  • 1Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Benin and Laboratoire de Chimie Physique, Matériaux et Modélisations Moléculaires, Benin
  • 2Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Benin
  • 3Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Benin and Laboratoire de Chimie Physique, Matériaux et Modélisations Moléculaires, Benin
  • 4National Institute of Agricultural Research of Benin
  • 5Institute of Urban Environment, Chinese Academy of Sciences, China
  • 6Institute of Urban Environment, Chinese Academy of Sciences, China
  • 7Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Benin
  • 8Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Benin

Int. Res. J. Environment Sci., Volume 14, Issue (4), Pages 20-32, October,22 (2025)

Abstract

This research assesses the potential of composting and anaerobic digestion (AD) to convert laying hen manure into valuable resources in Benin Republic, offering solutions to pressing environmental and agronomic issues. Field surveys revealed that 85% of farms use litter systems, producing 38.5 tons/month of manure, primarily managed by direct spreading (95% of farmers), leading to plant burns and ammonia emissions. Physicochemical analysis showed litter manure (LM) had higher organic matter (OM: 16.2% vs. 5.7%) and potassium (1.22% vs. 0.61%) than battery manure (BM), but both exhibited low nitrogen (<1%) and imbalanced C/N ratios (5.4 - 15.8). Composting with sawdust improved C/N (17.5) and OM (37.9%), meeting fertilizer standards. AD of LM yielded 32.6m³ biogas/ton, significantly outperforming BM (3.4 m³/ton). Kinetic modeling identified the modified logistic model (R² = 0.993) and first-order kinetic model (R 2 = 0.999) as best describing biogas production, respectively for LM and BM, with LM showing biphasic degradation of complex organics. Temperature profiles confirmed efficient composting, with thermophilic phases (>55°C for 15 days) ensuring hygienization. The results underscore the promise of a dual-output system that generates renewable biogas alongside nutrient-rich compost. Optimal amendments included LM (C/N 15.8, OM 16.2%), composted BM (N 1.64%, OM 34.7%), and sawdust-amended LM compost (OM 37.9%, C/N 17.5). Digestates required further composting (N 0.07%, C/N 43.4). These findings advocate for replacing direct spreading with circular economy approaches, emphasizing scalable C/N adjustment and substrate optimization for West African contexts. Future research should pilot these methods with techno-economic analyses to facilitate adoption.

References

  1. Ashworth, A., Chastain, J., & Moore Jr, P. (2020). Nutrient characteristics of poultry manure and litter. In Animal manure: Production, characteristics, environmental concerns, and management (pp. 63–87)., undefined, undefined
  2. Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., & Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. Journal of Environmental Management, 252, 109582. https://doi.org/10.1016/j.jenvman.2019.109582, undefined, undefined
  3. Zoli, M., Mantovi, P., Ferrari, P., Ferrari, L., & Ferrante, V. (2023). Soil organic matter and nutrient levels in outdoor runs in organic laying farms. Animals, 13(3), 401. https://doi.org/10.3390/ani13030401, undefined, undefined
  4. Gero, A. A., &Egbendewe, A. Y. (2020). Macroeconomic effects of semi-subsistence agricultural productivity growth: Evidence from Benin and extension to the WAEMU countries. Scientific African, 7, e00222. https://doi.org/10.1016/j.sciaf.2020.e00222, undefined, undefined
  5. Moussa, A. (2018). Does agricultural sector contribute to the economic growth in case of Republic of Benin. Journal of Social Economics Research, 5(2), 85–93. https://doi.org/10.18488/journal.35.2018.52.85.93, undefined, undefined
  6. Direction de la Statistique Agricole (DSA). (2024). *Les chiffres définitifs de la campagne agricole 2023-2024 au Bénin*. https://dsa.agriculture.gouv.bj, undefined, undefined
  7. Boko, M., Dougnon, T., Bankolé, H., Dougnon, T., Ahouangninou, C., Cledjo, P., &Soumanou, M. (2015). Poultry farming practices in South-Benin (West Africa) and impacts on the manures hygiene., undefined, undefined
  8. Ganda, H., Zannou-Boukari, E., Kenis, M., Chrysostome, C., & Mensah, G. (2019). Potentials of animal, crop and agri-food wastes for the production of fly larvae. Journal of Insects as Food and Feed, 5(2), 59–68. https://doi.org/10.3920/JIFF2018.0024, undefined, undefined
  9. Houenou, A. C. E. (2019). Etude de l’efficacité des bokashis, du compost et de la solution de biopesticide promus par le Centre Songhaï pour améliorer la production de la laitue et de l’amarante au Sud du Bénin [Master, undefined, undefined
  10. Brinton, W. F. (2000). Compost quality standards and guidelines: An international view. Woods End Research Laboratory, Inc., undefined, undefined
  11. Brondi, A. M., Daniel, J. S. P., de Castro, V. X. M., Bertoli, A. C., Garcia, J. S., &Trevisan, M. G. (2016). Quantification of humic and fulvic acids, macro-and micronutrients and C/N ratio in organic fertilizers. Communications in Soil Science and Plant Analysis, 47(22), 2506–2513. https://doi.org/10.1080/00103624.2016.1253714, undefined, undefined
  12. Burtan, L., Lacatusu, A., Sîrbu, C., Cioroianu, T., Lazar, R., Lungu, M., &Lacatusu, R. (2018). Use organic fertilizers in the modern agriculture. *Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 47*(1), 272–283., undefined, undefined
  13. Freyer, B., Ellssel, P., Nyakanda, F., & Saussure, S. (2024). Exploring the off-farm production, marketing and use of organic and biofertilisers in Africa: A scoping study. Report to the European Commission. DeSIRA-LIFT European Union., undefined, undefined
  14. Möller, K., &Schultheiß, U. (2015). Chemical characterization of commercial organic fertilizers. Archives of Agronomy and Soil Science, 61(7), 989–1012. https://doi.org/10.1080/03650340.2014.993330, undefined, undefined
  15. Ngabala, F. J., & Emmanuel, J. K. (2024). Potential substrates for biogas production through anaerobic digestion-an alternative energy source. Heliyon, 10(23). https://doi.org/10.1016/j.heliyon.2024.e34118, undefined, undefined
  16. Akpahou, R., Mensah, L. D., &Quansah, D. A. (2023). Renewable energy in Benin: Current situation and future prospects. Clean Energy, 7(5), 952–961. https://doi.org/10.1093/ce/zkad050, undefined, undefined
  17. Mensah, J. H. R., dos Santos, I. F. S., & Tiago Filho, G. L. (2023). A critical analysis of the energy situation in the Benin Republic and its evolution over the last decade. Renewable Energy, 202, 634–650. https://doi.org/10.1016/j.renene.2022.11.108, undefined, undefined
  18. Trancoso, M., Sousa, A. R., & Calisto, S. (2015). Procedure validation and laboratory performance monitoring for the measurement of moisture, ash and volatile matter mass fractions in solid biofuels. Accreditation and Quality Assurance, 20(2), 131–137. https://doi.org/10.1007/s00769-015-1116-5, undefined, undefined
  19. Allen, S. E. (Ed.). (1989). Chemical analysis of ecological materials. Blackwell Scientific Publications., undefined, undefined
  20. Kalra, Y. (1997). Handbook of reference methods for plant analysis. CRC Press., undefined, undefined
  21. Bremner, J. M., & Mulvaney, C. (1982). Nitrogen—Total. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties (pp. 595–624). American Society of Agronomy., undefined, undefined
  22. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3 chemical methods (pp. 961–1010). Soil Science Society of America., undefined, undefined
  23. Larney, F. J., Ellert, B. H., & Olson, A. F. (2005). Carbon, ash and organic matter relationships for feedlot manures and composts. Canadian Journal of Soil Science, 85(2), 261–264. https://doi.org/10.4141/S04-015, undefined, undefined
  24. Sun, S., Guo, C., Wang, J., Ren, L., Qu, J., Guan, Q., Dou, N., Zhang, J., Chen, Q., & Wang, Q. (2024). Effect of initial moisture content, resulting from different ratios of vegetable waste to maize straw, on compost was mediated by composting temperatures and microbial communities at low temperatures. Chemosphere, 357, 141808. https://doi.org/10.1016/j.chemosphere.2024.141808, undefined, undefined
  25. Pandia, S., Tanata, S., Rachel, M., Octiva, C., &Sialagan, N. (2018). Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids). IOP Conference Series: Materials Science and Engineering, 309(1), 012086. https://doi.org/10.1088/1757-899X/309/ 1/012086, undefined, undefined
  26. Alkhrissat, T., &Matarneh, S. (2025). Impact of anaerobic co digestion of ryegrass (RG) and cow manure (CM) on methane production and kinetic analysis. Results in Engineering, 24, 104028. https://doi.org/10.1016/ j.rineng.2024.104028, undefined, undefined
  27. Mohammadianroshanfekr, M., Pazoki, M., Pejman, M. B., Ghasemzadeh, R., &Pazoki, A. (2024). Kinetic modeling and optimization of biogas production from food waste and cow manure co-digestion. Results in Engineering, 24, 103477. https://doi.org/10.1016/j.rineng.2024.103477, undefined, undefined
  28. Pramanik, S. K., Suja, F. B., Porhemmat, M., &Pramanik, B. K. (2019). Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes, 7(9), 600. https://doi.org/ 10.3390/pr7090600, undefined, undefined
  29. Romadhon, M. R., Mujiyo, M., Suntoro, S., Dewi, W. S., Syamsiyah, J., Rahayu, R., Widijanto, H., Herdiansyah, G., Herawati, A., &Anggita, A. (2023). Assessing the quality of organic fertilizer products made from cow dung in Wonogiri Regency, Indonesia. Agroindustrial Journal, 10(2), 65–74., undefined, undefined
  30. Maffia, A., Marra, F., Canino, F., Battaglia, S., Mallamaci, C., Oliva, M., &Muscolo, A. (2024). Humic substances from waste-based fertilizers for improved soil fertility. Agronomy, 14(11), 2657. https://doi.org/10.3390/agronomy14112657, undefined, undefined
  31. Piccolo, A., & Drosos, M. (2025). The essential role of humified organic matter in preserving soil health. Chemical and Biological Technologies in Agriculture, 12(1), 21. https://doi.org/10.1186/s40538-025-00641-2, undefined, undefined
  32. Chen, H., Awasthi, S. K., Liu, T., Duan, Y., Ren, X., Zhang, Z., Pandey, A., & Awasthi, M. K. (2020). Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials, 389, 121908. https://doi.org/10.1016/j.jhazmat.2019.121908, undefined, undefined
  33. Seppänen, M. (2024). Carbon and nitrogen losses from laying hens´ manure in manure management chains [Doctoral dissertation]., undefined, undefined
  34. Martinez-Alonso, C., Díaz-Cruz, E. B., Becerra-Paniagua, D. K., & Baray-Calderón, A. (2023). Biotechnological formation of biogas. In Biotechnology in the generation of biofuels (pp. 27–47). Springer. https://doi.org/10.1007/978-3-031-36542-3_2, undefined, undefined
  35. Noor, R. S., Shah, A. N., Tahir, M. B., Umair, M., Nawaz, M., Ali, A., Ercisli, S., Abdelsalam, N. R., Ali, H. M., & Yang, S. H. (2024). Recent trends and advances in additive-mediated composting technology for agricultural waste resources: A comprehensive review. ACS Omega, 9(8), 8632–8653. https://doi.org/10.1021/acsomega.3c07312, undefined, undefined
  36. Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, C. M., Aremu, C., Adegbite, K., & Akinpelu, O. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports, 10(1), 16083. https://doi.org/ 10.1038/s41598-020-73291-x, undefined, undefined
  37. Rech, I., Kamogawa, M. Y., Jones, D. L., &Pavinato, P. S. (2020). Synthesis and characterization of struvite derived from poultry manure as a mineral fertilizer. Journal of Environmental Management, 272, 111072. https://doi.org/10.1016/j.jenvman.2020.111072, undefined, undefined
  38. European Parliament and Council of the European Union. (2019). *Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003*. https://eur-lex.europa.eu/eli/reg/2019/1009/oj, undefined, undefined
  39. Jin, S., Tang, J., Yang, X., Yu, T., Li, Y., & Ma, L. (2021). European Union organic fertilizer product standards, management mechanisms, and its enlightenment. *Chinese Journal of Eco-Agriculture, 29*(7), 1236–1242., undefined, undefined
  40. Agbede, T. M., &Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7, 100051. https://doi.org/10.1016/j.resenv.2022.100051, undefined, undefined
  41. Mulyani, O., Machfud, Y., Setiawan, A., & Joy, B. (2019). Potential of local organic matters in Jatinangor West Java Indonesia as raw materials for organic fertilizer. IOP Conference Series: Earth and Environmental Science, 393(1), 012048. https://doi.org/10.1088/1755-1315/393/1/012048, undefined, undefined
  42. Malisch, C., Finn, J., Eriksen, J., Loges, R., Brophy, C., & Huguenin‐Elie, O. (2024). The importance of multi‐species grassland leys to enhance ecosystem services in crop rotations. Grass and Forage Science, 79(2), 120–134. https://doi.org/10.1111/gfs.12656, undefined, undefined
  43. Schuster, J., Mittermayer, M., Maidl, F.-X., Nätscher, L., &Hülsbergen, K.-J. (2023). Spatial variability of soil properties, nitrogen balance and nitrate leaching using digital methods on heterogeneous arable fields in Southern Germany. Precision Agriculture, 24(2), 647–676. https://doi.org/10.1007/s11119-022-09966-4, undefined, undefined
  44. Priya, E., Sarkar, S., & Maji, P. K. (2024). A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. Journal of Environmental Chemical Engineering, 113211. https://doi.org/10.1016/j.jece.2024.113211, undefined, undefined
  45. Mo, J., Xin, L., Zhao, C., Qin, Y., Nan, Q., Mei, Q., & Wu, W. (2023). Reducing nitrogen loss during kitchen waste composting using a bioaugmented mechanical process with low pH and enhanced ammonia assimilation. Bioresource Technology, 372, 128664. https://doi.org/10.1016/ j.biortech.2023.128664, undefined, undefined
  46. Kaur, G., Basak, N., & Kumar, S. (2024). State-of-the-art techniques to enhance biomethane/biogas production in thermophilic anaerobic digestion. Process Safety and Environmental Protection, 187, 1498–1518. https://doi.org/ 10.1016/j.psep.2024.05.037, undefined, undefined
  47. Hwang, H. Y., Kim, S. H., Kim, M. S., Park, S. J., & Lee, C. H. (2020). Co-composting of chicken manure with organic wastes: Characterization of gases emissions and compost quality. Applied Biological Chemistry, 63(1), 1–10. https://doi.org/10.1186/s13765-020-00542-w, undefined, undefined
  48. Matheri, A., Ndiweni, S., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756–764. https://doi.org/10.1016/j.rser.2017.05.068, undefined, undefined
  49. Rothé, M., Darnaudery, M., &Thuriès, L. (2019). Organic fertilizers, green manures and mixtures of the two revealed their potential as substitutes for inorganic fertilizers used in pineapple cropping. Scientia Horticulturae, 257, 108691. https://doi.org/10.1016/j.scienta.2019.108691, undefined, undefined
  50. Fathi, A., & Afra, J. M. (2023). Plant growth and development in relation to phosphorus: A review. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 80*(1), 1–7. https://doi.org/10.15835/buasvmcn-agr:2022.0027, undefined, undefined
  51. Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861, undefined, undefined
  52. Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12, 100733. https://doi.org/10.1016/j.envc.2023.100733, undefined, undefined
  53. Bargougui, L., Guergueb, Z., Chaieb, M., & Mekki, A. (2020). Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste and Biomass Valorization, 11, 6235–6247. https://doi.org/10.1007/s12649-019-00879-4, undefined, undefined
  54. Finore, I., Feola, A., Russo, L., Cattaneo, A., Di Donato, P., Nicolaus, B., Poli, A., & Romano, I. (2023). Thermophilic bacteria and their thermozymes in composting processes: A review. Chemical and Biological Technologies in Agriculture, 10(1), 7. https://doi.org/10.1186/s40538-023-00381-z, undefined, undefined
  55. Aboutayeb, R., Fijahi, S., Hssaini, L., &Azim, K. (2024). Quality assessment of poultry manure compost: Focus on organic amendment and bioremediation roles toward sustainable agriculture. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-024-00523-1, undefined, undefined
  56. Manga, M., Muoghalu, C. C., & Acheng, P. O. (2023). Inactivation of faecal pathogens during faecal sludge composting: A systematic review. Environmental Technology Reviews, 12(1), 150–174. https://doi.org/ 10.1080/21622515.2023.2238824, undefined, undefined
  57. Rizwan, H. M., Naveed, M., Sajid, M. S., Nazish, N., Younus, M., Raza, M., Maqbool, M., Khalil, M. H., Fouad, D., Ataya, F. S., & Alharbi, S. A. (2024). Enhancing agricultural sustainability through optimization of the slaughterhouse sludge compost for elimination of parasites and coliforms. Scientific Reports, 14(1), 23953. https://doi.org/10.1038/s41598-024-75072-4, undefined, undefined
  58. Sharma, D., Saadi, I., Oazana, S., Lati, R., & Laor, Y. (2024). Distribution of residence time in rotary-drum composting and implications for hygienization. Waste Management, 179, 22–31. https://doi.org/10.1016/j.wasman.2024.04.038, undefined, undefined
  59. Luo, C., Li, S., Ren, P., Yan, F., Wang, L., Guo, B., Zhao, Y., Yang, Y., Sun, J., & Gao, P. (2024). Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study. Environmental Pollution, 348, 123439. https://doi.org/ 10.1016/j.envpol. 2024.123439, undefined, undefined
  60. Saha, C. K., Nime, J., Khatun, M. L., Sharna, T. H., & Alam, M. M. (2025). Rice straw co-digestion potential with cow dung and poultry droppings for maximizing biogas production in Bangladesh. Heliyon, 11(3)., undefined, undefined
  61. Wang, K., Yun, S., Xing, T., Li, B., Abbas, Y., & Liu, X. (2021). Binary and ternary trace elementsto enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas productionand digestate utilization. Bioresource Technology, 323,124571. https://doi.org/10.1016/j.biortech.2020.124571, undefined, undefined
  62. Qu, Y., Lv, X., Qin, N., Zhang, K., Ding, X., Luo, L., Qu, J., & Sun, Y. (2024). Mechanism of ball milling pretreatment to improve the anaerobic digestion performance and energy conversion efficiency of corn straw. Fuel, 366, 131409. https://doi.org/ 10.1016/ j.fuel.2024.131409, undefined, undefined