International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Degradation studies of Organic Pollutants using green synthesized NiO NPs from Clove Extract and investigation of antimicrobial properties

Author Affiliations

  • 1Department of Chemistry & Research Centre, Scott Christian College (Autonomous), Nagercoil-629003 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India
  • 2Department of Chemistry & Research Centre, Scott Christian College (Autonomous), Nagercoil-629003 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India
  • 3Department of Chemistry & Research Centre, Scott Christian College (Autonomous), Nagercoil-629003 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India

Int. Res. J. Environment Sci., Volume 14, Issue (4), Pages 1-7, October,22 (2025)

Abstract

In this study nanoscaled Nickel oxide nanoparticles were synthesized using clove extract under atmospheric condition through green synthesis. The synthesized nanoparticles were characterized using FT-IR, UV-Visible spectroscopy, EDAX, SEM and XRD techniques. Using Debye Scherer’s formula, the crystallite size was calculated. The presence of Ni was confirmed using EDAX. Using the synthesized nanoparticle, degradation of Congo Red dye was carried out. The effect of various parameters on dye degradation like catalyst dosage, dye concentration, pH were investigated systematically. The results revealed that NiO nanocatalyst are an efficient catalyst to carry out the degradation of Organic dyes.

References

  1. Fujishima, A. and Honda, K. (1972)., Eel ectrochemical photolysis of water at a semiconductor electrode., Nature, 238, (5358), 37–38.
  2. Carp, O., Huisman, C.L. and Reller, A. (2004)., Photoinduced reactivity of titanium dioxide., Prog. Solid State Chem., 32 (1-2), 33–177.
  3. Purusottam Reddy, B. Sivajee Ganesh,K. and Hussain, O.M. (2016)., Growth microstructure and super capacitive performance of copper oxide thin film prepared by RF magnetron sputtering., Appl Phys A., 122, 1-10.
  4. Zeggar, M. L., Bourfaa, F., Adjimi, A., Aida, M. S., & Attaf, N. (2016)., Copper oxide thin films for ethanol sensing., In IOP Conference Series: Materials Science and Engineering (Vol. 108, No. 1, p. 012004). IOP Publishing.
  5. Richardson, T.J. Slack, J.L. and Rubin, M. D. (2001)., Electrochromism in copper oxide thin films., Acta., 46, 2281-2284.
  6. Kidowaki, H., Oku, T., & Akiyama, T. (2012)., Fabrication and characterization of CuO/ZnO solar cells., In Journal of Physics: Conference Series, 352(1).
  7. Zhang, X., Song, J., Jiao, J., & Mei, X. (2010)., Preparation and photocatalytic activity of cuprous oxides., Solid State Sciences, 12(7), 1215-1219.
  8. Chen, C. Cheng, M. and Chen, A. (2012)., Photocatalytic decolorization of Remazol Black 5 and Remazol Brilliant Orange 3R by mesoporous TiO2., Journal of Environmental Managemen., 102, 125–133.
  9. Akti, F. (2018)., Photocatalytic degradation of remazol yellow using polyaniline–doped tin oxide hybrid photocatalysts with diatomite support., Applied Surface Science, 455, 931-939.
  10. Aksu, Z. and Akın, A.B. (2010)., Comparison of Remazol Black B biosorptive properties of live and treated activated sludge., Chemical Engineering Journal, 165, 184–193.
  11. Sahel, K. Perol, N. Dappozze, F. Bouhent, M. Derriche, Z. and Guillard C. (2010),, Photocatalytic degradation of a mixture of two anionic dyes: Procion Red MX-5B and Remazol Black 5 (RB5)., Journal of Photochemistry and Photobiology A: Chemistry., 212, 107–112.
  12. Siddiqa, A. Masih, D. Anjum, D. and Siddiq, M. (2015). Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol. Journal of Environmental Sciences, 37, 100–109., undefined, undefined
  13. Pereira, L. D. O., de Moura, S. G., Coelho, G. C., Oliveira, L. C., de Almeida, E. T., & Magalhaes, F. (2019)., Magnetic photocatalysts from industrial residues and TiO2 for the degradation of organic contaminants., Journal of Environmental Chemical Engineering, 7(1), 102826.
  14. Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011)., An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals., Desalination, 276(1-3), 13-27.
  15. Kumar, K. M., Godavarthi, S., Karthik, T. V. K., Mahendhiran, M., Hernandez-Eligio, A., Hernandez-Como, N., ... & Gomez, L. M. (2016)., Green synthesis of S-doped rod shaped anatase TiO2 microstructures., Materials Letters, 183, 211-214.
  16. Li, Q., Wang, L. S., Hu, B. Y., Yang, C., Zhou, L., & Zhang, L. (2007)., Preparation and characterization of NiO nanoparticles through calcination of malate gel., Materials Letters, 61(8-9), 1615-1618.
  17. Xin, X. L¨u, Z. Zhou, B. et al., (2007)., Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO., Journal of Alloys and Compounds., 427(1-2) ,251–255.
  18. Wu, Y., He, Y., Wu, T., Chen, T., Weng, W., & Wan, H. (2007)., Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method., Materials Letters, 61(14-15), 3174-3178.
  19. Min, K. C., Kim, M., You, Y. H., Lee, S. S., Lee, Y. K., Chung, T. M., ... & Kim, Y. (2007)., NiO thin films by MOCVD of Ni (dmamb) 2 and their resistance switching phenomena., Surface and Coatings Technology, 201(22-23), 9252-9255.
  20. Hotovy, I., Huran, J., Spiess, L., Romanus, H., Buc, D., & Kosiba, R. (2006)., NiO-based nanostructured thin films with Pt surface modification for gas detection., Thin Solid Films, 515(2), 658-661.
  21. Needham, S. A. Wang, G. X. and Liu, H. K. (2006)., Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries., Journal of Power Sources., 159(1), 254–257.
  22. Thota, S., & Kumar, J. (2007)., Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles., Journal of physics and chemistry of solids, 68(10), 1951-1964.
  23. Zheng, Y. Z., & Zhang, M. L. (2007)., Preparation and electrochemical properties of nickel oxide by molten-salt synthesis., Materials Letters, 61(18), 3967-3969.
  24. Wu, Y., He, Y., Wu, T., Chen, T., Weng, W., & Wan, H. (2007)., Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method., Materials Letters, 61(14-15), 3174-3178.
  25. Ni, X., Zhang, Y., Tian, D., Zheng, H., & Wang, X. (2007)., Synthesis and characterization of hierarchical NiO nanoflowers with porous structure., Journal of Crystal Growth, 306(2), 418-421.
  26. Srivastava, N., & Srivastava, P. C. (2010)., Realizing NiO nanocrystals from a simple chemical method., Bulletin of Materials Science, 33(6), 653-656.