International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Hypsometric equations of selected tree species in university of port Harcourt

Author Affiliations

  • 1Department of Environmental Forestry and Wildlife Management, Faculty of Agriculture, University of Port Harcourt, Rivers State, Nigeria
  • 2Department of Environmental Forestry and Wildlife Management, Faculty of Agriculture, University of Port Harcourt, Rivers State, Nigeria
  • 3Department of Environmental Forestry and Wildlife Management, Faculty of Agriculture, University of Port Harcourt, Rivers State, Nigeria

Int. Res. J. Environment Sci., Volume 14, Issue (3), Pages 42-49, July,22 (2025)

Abstract

Deeper comprehension of the relationship between hypsometric equations and forest growth and yield models would enhance forest monitoring, management, and volume estimation. Numerous elements, including socioeconomic position, age, density, sivilcultural treatments, species features, and the quality of the forest site, influence this relationship. .Therefore, the aim of this study was to develop suitable hypsometric models for the selected tree species in University of Port Harcourt using purposive sampling technique. Four regression model (linear, parabolic, hyperbolic and weibull) functions were developed and four amenity trees were selected for this study. Growth variables such as: Total height, Clear Bole height, Merchantable height, Crown length, Crown diameter, Diameter outside bark at breast height (DBH, 1.3m above the ground) were measured and processed into suitable form for statistical analysis using descriptive statistic and correlation analysis. Among the selected species, Terminalia mantaly was the most abundant species present accounting for 26.6% (75), followed by Mangifera indica 25.2% (71), Azadirachta indica 24.8% (70) and Terminalia catappa 23.4% (66). The correlation matrix observed a significant difference between height and other growth variables. However, merchantable height has the highest correlation value of 0.780 at p>0.01. Although all models revealed no significant difference between the mean observed and mean predicted values, meaning the model is fit for height diameter prediction. The best hypsometric model observed was Weilbull function with the highest coefficient of determination (R2=0.601) and the lowest standard error of estimate (SEE =2.440). Conclusively, the result of this study has evidently revealed that the weibull function can be used in developing hypsometric equations and recommended due to their suitable height prediction and biological simplicity.

References

  1. Enquist, B. J., West, G. B., & Brown, J. H. (2009)., Extensions and evaluations of a general quantitative theory of forest structure and dynamics., Proceedings of the National Academy of Sciences, 106(17), 7046-7051.
  2. West, G. B., Enquist, B. J., & Brown, J. H. (2009)., A general quantitative theory of forest structure and dynamics., Proceedings of the National Academy of Sciences, 106(17), 7040-7045.
  3. Eerikäinen, K., (2009)., A multivariate linear mixed-effects model for the generalization of sample tree heights and crown ratios in the Finnish national forest inventory., For. Sci., 55, 480–493. doi: 10.1093/forestscience/55.6.480 .
  4. Temesgen, H., & v. Gadow, K. (2004)., Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia., European Journal of Forest Research, 123(1), 45-51.
  5. Huang, S., D. Price, & S. J. Titus, (2000)., Development of ecoregion-based height-diameter models for white spruce in boreal forests., Forest Ecology and Management, 129 (1-3), 125–141
  6. Krisnawati, H., Wang, Y., & Ades, P. K. (2010)., Generalized height-diameter models for Acacia mangium Willd. plantations in south Sumatra., Journal of Forestry Research, 7(1), 1-19.
  7. Valbuena, R., Heiskanen, J., Aynekulu, E., Pitkänen, S., & Packalen, P. (2016)., Sensitivity of above-ground biomass estimates to height-diameter modelling in mixed-species West African woodlands., PloS one, 11(7), e0158198.
  8. Kearsley, E., Moonen, P. C., Hufkens, K., Doetterl, S., Lisingo, J., Boyemba Bosela, F., ... & Verbeeck, H. (2017)., Model performance of tree height-diameter relationships in the central Congo Basin., Annals of Forest Science, 74(1), 7.
  9. Mensah, S., Pienaar, O.L., Kunneke, A., et al. (2018)., Height–diameter allometry in South Africa’s indigenous high forests: assessing generic models performance and function forms., For. Ecol. Manag., 410, 1–11. doi: 10.1016/j.foreco.2017.12.030 .
  10. Mugasha, W. A., Mauya, E. W., Njana, A. M., Karlsson, K., Malimbwi, R. E. & Ernest, S. (2019)., Height‐Diameter Allometry for Tree Species in Tanzania Mainland., International Journal of Forestry Research, (1), 4832849.
  11. Peng, C., Zhang, L., & Liu, J. (2001)., Developing and validating nonlinear height–diameter models for major tree species of Ontario, Northern Journal of Applied Forestry, 18(3), 87-94.
  12. Newton, P. F., & Amponsah, I. G. (2007)., Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability., Forest Ecology and Management, 247(1-3), 149-166.
  13. Sharma, M., & Parton, J. (2007)., Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach., Forest Ecology and Management, 249(3), 187-198.
  14. Colbert, K. C., Larsen, D. R., & Lootens, J. R. (2002)., Height-diameter equations for thirteen midwestern bottomland hardwood species., Northern Journal of Applied Forestry, 19(4), 171-176.
  15. Cimini, D., & Salvati, R. (2011)., Comparison of generalized nonlinear height-diameter models for Pinus halepensis Mill. and Quercuscerris L. in Sicily (Southern Italy)., Italian Journal of Forest and Mountain Environments, 66(5), 395-396.
  16. Petráš, R., Bo š el’a, M., Mecko, J., et al. (2014)., Height-diameter models for mixed- species forests consisting of spruce, fir, and beech., Folia For. Pol., 56, 93–104. doi: 10.2478/ffp-2014-0009 .
  17. Missanjo, E., & Mwale, G. (2014)., A mixed-effects height-diameter model for Pinus kesiya in Malawi., Journal of biodiversity management and forestry, 3(2), 3-7.
  18. Vanclay, J. K. (2009)., Tree diameter, height and stocking in even-aged forests., Annals of Forest Science, 66(7), 702-702.
  19. Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., ... & Lloyd, J. (2011)., Height-diameter allometry of tropical forest trees., Biogeosciences, 8(5), 1081-1106.
  20. Banin, L., Feldpausch, T.R., Phillips, O.L., et al., (2012)., What controls tropical forest archi- tecture? Testing environmental, structural and floristic drivers., Glob. Ecol. Biogeogr., 21, 1179–1190. doi: 10.1111/j.1466-8238.2012.00778.x
  21. Liu, M., Feng, Z., Zhang, Z., Ma, C., Wang, M., Lian, B. L., ... & Zhang, L. (2017)., Development and evaluation of height diameter at breast models for native Chinese Metasequoia., PloS one, 12(8), e0182170.
  22. Temesgen, H., Zhang, C. H., & Zhao, X. H. (2014)., Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China., Forest Ecology and Management, 316, 78-89.
  23. Mehtätalo, L. (2004)., A longitudinal height–diameter model for Norway spruce in Finland., Canadian Journal of Forest Research, 34(1), 131-140.
  24. Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Vieilledent, G. (2014)., Improved allometric models to estimate the aboveground biomass of tropical trees., Global change biology, 20(10), 3177-3190.
  25. Figueiredo Filho, A., Dias, A. N., Kohler, S. V., Verussa, A. A., & Chiquetto, A. L. (2010)., Evolution of the hypsometric relationship in Araucaria angustifolia plantations in the mid-south region of Paraná state., Cerne, 16, 347-357.
  26. Thanh, T.N., Tien, T.D., Shen, H.L. (2019)., Height-diameter relationship for Pinusko- raiensis in Mengjiagang forest farm of Northeast China using nonlinear regres- sions and artificial neural network models., J. For. Sci., 65, 134–143. doi: 10.17221/5/2019-JFS .
  27. Vanderschaaf, C. L. (2020)., Predictive ability of mixed-effects height–diameter mod- els fit using one species but calibrated for another species., For. Sci. 66, 14–24. doi: 10.1093/forsci/fxz058 .
  28. Bronisz, K. & Mehtätalo, L., (2020)., Mixed-effects generalized height–diameter model for young silver birch stands on post-agricultural lands., For. Ecol. Manag., 460, 117901. doi: 10.1016/j.foreco.2020.117901 .
  29. Zang, H., Lei, X. & Zeng, W. (2016)., Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models., For. Int. J. For. Res., 89, 434–445. doi: 10.1093/forestry/cpw022 .
  30. Rust, S. (2014)., Analysis of regional variation of height growth and slenderness in populations of six urban tree species using a quantile regression approach., Urban Forestry & Urban Greening, 13(2), 336-343.
  31. Chen, E., & Guo, Z. (2008)., WATER: dataset of forest structure parameter survey at the super site around the Dayekou Guantan forest station., Heihe plan science data center. Institute of Forest Resource Information Techniques, Chinese Academy of Sciences, Heihe Plan Science Data Center, Beijing.
  32. Aiyeloja A.A, Adedeji G.A & Larinde, S.L. (2014)., Influence of Seasons on Honeybee Wooden Hives Attack by Termites in Port Harcourt, Nigeria., Int J Biol Vet Agric Food Eng, 8, 734-737.
  33. Armenteras, D., Rodríguez, N., & Retana, J. (2009)., Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield?., Biological Conservation, 142(7), 1411-1419.
  34. Ezeabasili, A. C. C., Iloghalu, I. E., Okoro, B. U., & Manafa, I. F. (2015)., Sustainable Urban Forestry in Nigerian Built Environments., Journal of Scientific Research & Reports, 5(7). 524 – 531
  35. Huang, S., Meng, S.X. & Yang, Y. (2009)., Using nonlinear mixed model technique to determine the optimal tree height prediction models for black spruce., Mod Appl. Sci., 3, 3-18.
  36. Peng, C., Zhang, L., & Liu, J. (2001)., Developing and Validating Nonlinear Height-Diameter Models for Major Tree Species of Ontarios Boreal Forests., Journal of Applied Forestry, 18(3), 87–94.
  37. Peng, C., Zhang, L., Zhou, X., Dang, Q., & Huang, S. (2004)., Developing and Evaluating Tree Height-Diameter Models at Three Geographic Scales for Black Spruce in Ontario., Northern. Journal of Applied Forestry, 21(2), 83–92.
  38. Paulo, J. A., Tomé, J., & Tomé, M. (2011)., Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands., Ann. Forest Sci., 68, 295–309.
  39. Zheng, J., Zang, H., Yin, S., Sun, N., Zhu, P., Han, Y., ... & Liu, C. (2018)., Modeling height-diameter relationship for artificial monoculture Metasequoia glyptostroboides in sub-tropic coastal megacity Shanghai, China., Urban Forestry & Urban Greening, 34, 226-232.
  40. Adekunle, V. A. J. (2007)., Non-linear regression models for timber volume estimation in natural forest ecosystem, Southwest Nigeria., Research Journal of Forestry, 1(2), 40-54.
  41. Castaño-Santamaría, J., Crecente-Campo, F., Fernández-Martínez, J. L., Barrio-Anta, M. & Obeso, J. R. (2013)., Tree height prediction approaches for uneven-aged beech forests in northwestern Spain., Forest Ecol. Manag., 307, 63–73
  42. Crecente-Campo, F., Corral-Rivas, J. J., Vargas-Larreta, B. & Wehenkel, C. (2014)., Can random components explain differences in the height–diameter relationship in mixed uneven-aged stands?,, Ann. For. Sci., 71, 51–70.
  43. Mehtätalo, L., de-Miguel, S., & Gregoire, T. (2015)., Modeling height diameter curves for prediction., Can. J. Forest Res., 45, 826–837.
  44. Adamec, Z. & Drápela, K. (2015)., Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship., J. For. Sci., 61, 235–243.
  45. Stankova, T. V. & Diéguez-Aranda, U. (2012)., Height-diameter relationships for Scots pine plantations in Bulgaria: optimal combination of model type and application., Ann. For. Res., 56, 149–163
  46. Scaranello, M. A. d. S., Alves, L. F., Vieira, S. A., Camargo, P. B. d., Joly, C. A., & Martinelli, L. A. (2012)., Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil., Sci. Agr., 69, 26–37.
  47. Sharma, R. P., & Breidenbach, J. (2015)., Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data., Forest Science and Technology, 11(1), 44-53.
  48. Rupšys, P. (2015)., Height–diameter models with stochastic differential equations and mixed-effects parameters., Journal of Forest Research, 20(1), 9-17.
  49. Jiang, L., & Li, Y. (2010)., Application of Nonlinear Mixed-Effects Modeling Approach in Tree Height Prediction., J. Comput., 5(10), 1575-1581.
  50. Lumbres RIC, Lee YJ, CaloraJr FG, Parao MR. (2013)., Model fitting and validation of sixheight–DBH equations for Pinuskesiya Royle ex-Gordon in Benguet Province, Philippines., Tech., 9, 45–50.