The capability of Phragmiteskarka in phytoremediation for the treatment of municipal wastewater through a constructed wetland model
Author Affiliations
- 1Indian Institute of Food Science and Technology, Chhatrapati Sambhajinagar, Maharashtra, India
- 2Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
Int. Res. J. Environment Sci., Volume 14, Issue (3), Pages 7-33, July,22 (2025)
Abstract
The growing utilization of constructed wetlands for sewage treatment, alongside increasingly stringent water quality regulations, underscores the need for enhanced process design tools. This paper examines how seasonal variations influence the efficiency of pollution removal in sewage treatment. In this study, Phragmiteskarka was cultivated in constructed wetlands and evaluated for its effectiveness in treating various concentrations of municipal wastewater. Samples of municipal wastewater were collected before and after treatment and analyzed for specific parameters, including pH, electrical conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), nitrate (NO3), phosphate (PO4), and sulfate (SO4), using standardized methods. The objective of this investigation was to assess the treatment efficacy of Phragmiteskarka across different concentrations of municipal wastewater. The findings indicate that Phragmiteskarka achieves the highest level of pollution reduction when municipal wastewater is treated in constructed wetlands, with no observed phytotoxic effects.
References
- Solano, M. L., Soriano, P., and Ciria, M. P. (2004)., Constructed wetlands as a sustainable approach for wastewater treatment in small communities., Biosystems Engineering, 87, 109–118. DOI: 10.1016/j.biosystemseng.2004.09.001
- Song, Z., Bi, X., & Cao, J. (2002)., The use of constructed wetlands for sewage treatment in small cities across China., Chinese Journal of Ecology, 22(3), 74–78. https://www.cje.net.cn/EN/abstract/abstract15932.shtml
- Ye, F., & Li, Y. (2009)., Improving nitrogen removal in a two-tier hybrid constructed wetland for the treatment of domestic wastewater in small rural communities., Ecological Engineering, 35(7), 1043–1050. DOI: 10.1016/j.ecoleng.2009.03.009
- Korkusuz, E.A., Beklioglu, M., and Demirer, G.N. (2004)., Treatment efficiencies of pilot-scale vertical flow constructed wetlands for domestic wastewater., Turkish Journal of Engineering and Environmental Sciences, 28(5), 333–344. DOI: 10.3906/eng-0309-17
- Wu, S.; Wallace, S.; Brix, H.; Kuschk, P.; Kirui, W. K.; Masi, F. and Dong, R. (2015)., Addressing the treatment of industrial effluents in constructed wetlands: Challenges, operational strategies, and overall effectiveness., Environmental Pollution, 201 (March), 107–120. DOI: 10.1016/j.envpol.2015.03.006
- Sayadi, M. H., Kargar, R., Doosti, M. R., and Salehi, H. (2012)., A global review of hybrid constructed wetlands for wastewater treatment., Proceedings of the International Academy of Ecology and Environmental Sciences, 2(4), 204–222
- Denny, P. (1997)., The implementation of constructed wetlands in developing nations., Water Science and Technology, 35, 27-34.DOI (10.2166/wst.1997.0157)
- Keddy, P.A. (2010)., Wetland Ecology: Principles and Conservation., 2nd ed. Cambridge: Cambridge University Press, DOI: 10.1017/CBO9780511778179
- Vymazal, J. (2010)., Constructed wetlands for wastewater treatment: A review of five decades of experience., Environmental Science & Technology Journal, 45, 61-69. DOI: 10.1021/es101403qlink.springer.com+3
- Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., and Vangronsveld, J. (2009)., Utilizing plant-microbe collaborations to enhance biomass production and environmental remediation., Trends in Biotechnology, 27, 591–598. DOI: 10.1016/j.tibtech.2009.07.006.PMC+3
- Gomes, H. I. (2012)., Phytoremediation for bioenergy: challenges and opportunities., Environmental Technology Reviews, 1(1), 59–66. https://doi.org/10.1080/09593330.2012.696715
- Bauddh, K., Singh, B., and Korstad, J. (2017)., The Phytoremediation Potential of Bioenergy Crops., Springer Nature: Singapore, 2017.DOI: 10.1007/978-981-10-3084-0
- Calheiros, C. S. C., Rangel, A. O. S. S., and Castro, P.M.L. (2007)., The application of constructed wetland systems with various plant species for treating tannery wastewater., Water Research, 41(8), 1790. DOI:10.1016/j.watres. 2007.01.012
- Seidel, K. (1965)., Phenol-Abbau im Wasser durch Scirpus lacustris L. während einer Versuchsdauer von 31 Monaten., Naturwissenschaften, 52(13), 398-398.
- Seidel, K. (1965)., Neue Wege zur Grundwasser Anreicherung in Krefeld, Vol. II. Hydrobotanische Reinigungs methode., GWF Wasser/Abwasser, 30, 831-833.
- Seidel, K. Macrophytes and water purification. In J. Tourbier & R. W. Pierson Jr. (Eds.) (1976)., Biological Control of Water Pollution., pp. 109–121. University of Pennsylvania Press, Philadelphia, Pennsylvania, DOI:10.9783/9781512807967-015
- Kivaisi, A. K. (2001)., A review of the potential for constructed wetlands in wastewater treatment and reuse in developing nations., Ecological Engineering, 16, 545–560. DOI: 10.1016/S0925 8574(00)00113 0
- Vymazal, J. (2002)., The application of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: a decade of experience., Ecological Engineering, 18, 633–646. DOI: 10.1016/S0925 8574(02)00025 3
- Kaseva, M.E. (2004)., The effectiveness of a sub-surface flow constructed wetland in refining pre-treated wastewater: a study in a tropical context., Water Research, 38, 681–687.
- Korkusuz, E.A., Beklioglu, M., and Demirer, G.N. (2005)., A comparative analysis of treatment performance between blast furnace slag-based and gravel-based vertical flow wetlands, both operated under identical conditions for domestic wastewater treatment in Turkey., Ecological Engineering, 24, 187–200. DOI: 10.1016/j.ecoleng.2004.10.002
- Mantovi, P., Marmiroli, M., and Maestri, E. (2003)., The use of a horizontal subsurface flow constructed wetland for treating dairy parlor wastewater., Bioresource Technology, 88, 85–94. DOI 10.1016/S0960 8524(02)00291 2
- Ayaz, S.C. and Akca, L. (2001)., Natural systems for wastewater treatment., Environmental International, 26, 189–195. DOI is 10.1016/S0160-4120(00)00099-4
- EPA (1999)., Treatment of Municipal Wastewaters Using Constructed Wetlands., Cincinnati, OH. EPA technical report (EPA/625/R 99/010)
- Sun, T.H. (1997)., Research on Land Treatment Systems for Municipal Wastewater., Science Press, Beijing, pp. 63–89.
- Ji, G.D., Sun, T.H., and Zhou, Q.X. (2002)., A constructed subsurface flow wetland for the treatment of oil-produced water from the Liaohe oilfield in China., Ecological Engineering, 18, 459–465. DOI (10.1016/S0925 8574(01)00106 9)
- Upadhyay, A.K., Bankoti, N.S., & Rai, U.N. (2016)., Investigations into the sustainability of a simulated constructed wetland system for urban waste treatment: design and operational aspects., Journal of Environmental Management, 169, 285–292. DOI 10.1016/j.jenvman.2016.01.004
- Witters N, Mendelsohn RO, and Van Slycken S. (2012)., Is phytoremediation a sustainable remediation technology? Insights from a case study focusing on energy production and carbon dioxide reduction., Biomass and Bioenergy, 39, 454–469. DOI is 10.1016/j.biombioe.2011.08.016
- Hu, R. (2020)., Pollution Management and Remediation of Rural Water Resources from an Urbanization Perspective., Environmental Technology & Innovation, 20, 101136. https://doi.org/10.1016/j.eti.2020.101136
- Hua, J., Zhang, C., Yin, Y., et al. (2012)., The phytoremediation potential of three aquatic macrophytes in manganese-contaminated water., Water and Environment Journal, 26(3), 335–342. https://doi.org/10.1111/j.1747-6593.2011.00293.x
- Harun, N.H., Tuah, P.M., Markom, N.Z., &Yusof, M.Y. (2008)., The distribution of heavy metals in Monochoriahastata and Eichhorniacrassipes in their natural environments., In: Proceedings of the International Conference on Environmental Research and Technology, Penang, Malaysia, 28–30. UniversitiSains Malaysia, pp. 550–553.
- Soltan, M.E., & Rashed, M.N. (2003)., Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations., Advances in Environmental Research, 7(2), 321–334. https://doi.org/10.1016/S1093-0191(02)00002-3
- Mishra, V. K. & Tripathi, B.D. (2008)., Simultaneous removal and accumulation of heavy metals by three aquatic macrophytes., Bioresource Technology, 99(15), 7091–7097. https://doi.org/10.1016/j.biortech.2008.01.002
- Aisien FA, Faleye O and Aisien ET. (2010)., Phytoremediation techniques for heavy metals in water solutions., Leonardo Journal of Sciences, 17, 37–46.
- Vymazal, J. (2011)., Plants used in constructed wetlands with horizontal subsurface flow: A review., Hydrobiologia, 674(1), 133–156. https://doi.org/10.1007/s10750-011-0738-9
- Crowder, A. A., & Painter, D. S. (1991)., Submerged macrophytes in Lake Ontario: Current knowledge, research needs, and management concerns., Canadian Journal of Fisheries and Aquatic Sciences, 48(8), 1539–1545. https://doi.org/10.1139/f91-183
- Savino, J. F., & Stein, R. A. (1982)., The influence of simulated submerged vegetation on predator-prey interactions between largemouth bass and bluegills., Transactions of the American Fisheries Society, 111(3), 255–266. https://doi.org/10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2
- Jeppesen, E., Jensen, J.P., Søndergaard, M., Lauridsen, T., Pedersen, L.J., & Jensen, L. (1997)., Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth., Hydrobiologia, 342/343, 151–164. https://doi.org/10.1023/A:1017046130329
- Van Donk, E., & van de Bund, W.J. (2002)., The influence of submerged macrophytes, including charophytes, on phyto- and zooplankton communities: allelopathy versus alternative mechanisms., Aquatic Botany, 72(3–4), 261–274. https://doi.org/10.1016/S0304-3770(01)00205-4
- Li, J., Huang, P., & Zhang, R. (2010)., Modeling the refuge effect of submerged macrophytes in ecological dynamics of shallow lakes: A new model of fish functional response., Ecological Modelling, 221(17), 2076–2085. https://doi.org/10.1016/j.ecolmodel.2010.04.021
- Gotceitas, V. & Colgan, P. (1989)., The impact of habitat complexity on predator foraging success: A quantitative examination of the threshold hypothesis., Oecologia, 80(2), 158–166. https://doi.org/10.1007/BF00380145
- Warfe, D. M., & Barmuta, L. A. (2006)., Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community., Oecologia, 150(1), 141–154. https://doi.org/10.1007/s00442-006-0505-1
- Walker, P. D., Wijnhoven, S., & van der Velde, G. (2013)., The presence and growth forms of macrophytes affect the structure of macroinvertebrate communities., Aquatic Botany, 104, 80–87. https://doi.org/10.1016/j.aquabot.2012.09.003
- Cazzanelli, M., Warming, T. P. & Christoffersen, K. S. (2008)., Emergent and floating leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation., Hydrobiologia, 605(1), 113–122. https://doi.org/10.1007/s10750-008-9324-1
- Van de Meutter, F., Cottenie, K., & De Meester, L. (2008)., Analyzing variations in macroinvertebrate communities associated with emergent, floating-leaved, and submerged vegetation in shallow ponds., Fundamental and Applied Limnology, 173, 47–57.https://doi.org/10.1127/1863-9135/2008/0173-0047
- Dvorak, J., & Best, E. P. H. (1982)., Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships., Hydrobiologia, 95, 115–126. https://doi.org/10.1007/BF00044479
- Conrow, R., Zale, A.V., & Gregory, R.W. (1990)., Distributions and abundances of early life stages of fishes in a Florida lake dominated by aquatic macrophytes., Transactions of the American Fisheries Society, 119(3), 521–528. https://doi.org/10.1577/1548-8659(1990)119<0521:DAAOEL>2.3.CO;2
- Bryan, M.D., & Scarnecchia, D.L. (1992)., Species richness, composition, and abundance of fish larvae and juveniles inhabiting natural and developed shorelines of a glacial Iowa lake., Environmental Biology of Fishes, 35, 329–341. https://doi.org/10.1007/BF00004984OUCI+2
- Strakosh, T. R.; Eitzmann, J. L.; Gido, K. B.; & Guy, C. S. (2005)., The response of water willow (Justiciaamericana) to different water inundation and desiccation regimes., North American Journal of Fisheries Management, 25(4), 1476–1485. DOI: 10.1577/M05 051.1
- Collingsworth, P. D. & Kohler, C. C. (2010)., Abundance and habitat use of juvenile sunfish among different macrophyte stands., Lake and Reservoir Management, 26(1), 35–42. DOI: 10.1080/07370651003634380
- Stahr, K. J., & Shoup, D. E. (2015)., American water willow mediates survival and antipredator behavior of juvenile Largemouth Bass., Transactions of the American Fisheries Society, 144(5), 903-910.
- Radomski, P. & Goeman, T. J. (2001)., Consequences of human lakeshore development on emergent and floating leaf vegetation abundance., North American Journal of Fisheries Management, 21(1), 46–61. DOI: 10.1577/1548 8675(2001)021<0046:COHLDO>2.0.CO;2
- APA (2025)., Water and Wastewater., Assistance provided by AVA, AI Chatbot.
- Seidel, K. (1953)., Title in German; early experiments on macrophyte-based water purification., Original report, Limnological Station Plon, Germany.
- Seidel, K. (1955)., Die Flechtbinse, Scirpuslacustris L.: Ökologie, Morphologie und Entwicklung; ihreStellungbei den Völkern und ihrewirtschaftliche Bedeutung. (English translation roughly: The Common Bulrush: Ecology, Morphology and Development; its Cultural and Economic Importance., Die Binnengewässer, Band 21, Stuttgart: E. Schweizerbart [216 pp].
- Kadlec, R. H. & Wallace, S. (2009/2010)., Treatment Wetlands (2nd ed.)., CRC Press. (Detailed historical overview, including Seidel’s original work)
- Reddy K.R., D, Investigated the transport of oxygen through aquatic macrophytes and its significance in wastewater treatment., Journal of Environmental Quality, 19, 261-267. DOI (10.2134/jeq1990.00472425001900020011x)
- Reddy, K. R.; Patrick, W. H., Jr.; & Lindau, C. W. (1989)., Nitrification–Denitrification at the Plant Root–Sediment Interface in Wetlands., Limnology and Oceanography, 34(6), 1004 – 1013. DOI: 10.4319/lo.1989.34.6.1004
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., &Tilman, D. G. (1997)., Human alteration of the global nitrogen cycle: Sources and consequences., Ecological Applications, 7(3), 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HIAOTG]2.0.CO;2
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. (2008)., The Transformation of the Nitrogen Cycle: Recent Developments, Challenges, and Possible Solutions., Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674
- Bunce, J. T.; Ndam, E.; Ofiteru, I. D.; Moore, A.; Graham, D. W. (2018)., An overview of phosphorus removal technologies and their relevance to small-scale domestic wastewater treatment systems., Frontiers in Environmental Science, 6, Article 8. https://doi.org/10.3389/fenvs.2018.00008
- Dvorak, J. and Best, E. P. H. (1982)., Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships., Hydrobiologia, 95, 115–126. DOI:10.1007/BF00044479
- Runtti, H.; Luukkonen, T.; Niskanen, M.; Tuomikoski, S.; Kangas, T.; Tynjälä, P.; Tolonen, E. T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. (2016)., Sulphate removal over barium-modified blast-furnace-slag geopolymer., Journal of Hazardous Materials, 317, 373–384. https://doi.org/10.1016/j.jhazmat.2016.06.001
- Nurmesniemi, E.-T., Hu, T., Rajaniemi, K., & Lassi, U. (2021)., Sulphate removal from mine water by precipitation as ettringite by newly developed electrochemical aluminium dosing method., Desalination and Water Treatment, 217, 195–202. https://doi.org/10.5004/dwt.2021.26920
- Bowell, R. J., Dill, S., Cowan, J., & Wood, A. (2004)., A review of sulfate removal options for mine waters., Proceedings of mine water, 75-88.
- Chang I.S., Shin P.K. and Kim B.H. (2000)., Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate., Water Res, 34(4), 1269–1277. DOI: 10.1016/S0043-1354(99)00268-7
- Kiran, M.G., Pakshirajan, K., and Das, G. (2017)., Mechanisms and cell surface characterization of heavy metal removal from a multicomponent system using sulfate-reducing bacteria., Journal of Hazardous Materials, 324, 62–70. DOI: 10.1016/j.jhazmat.2015.12.042
- Najib T, Solgi M, Farazmand A, Heydarian SM and Nasernejad B (2017)., Optimization of sulfate removal by sulfate-reducing bacteria utilizing response surface methodology, alongside heavy metal removal in a sulfidogenic UASB reactor., Journal of Environmental Chemical Engineering, 5(4), 3256–3265. DOI: 10.1016/j.jece.2017.06.016