International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Towards designing activated carbons with specific surface characteristics from agro waste of Telfairia Occidentalis Hook. F.

Author Affiliations

  • 1Group Research in Analytical Chemistry, Environment and Climate Change (GRACE & CC), Department of Chemistry, Imo State University Owerri, P. M. B 2000, Imo State, Nigeria
  • 2Department of Environmental Technology, FUTO, Owerri, Imo State, P. M. B. 1526, Nigeria
  • 3Department of Environmental Technology, FUTO, Owerri, Imo State, P. M. B. 1526, Nigeria
  • 4Department of Environmental Technology, FUTO, Owerri, Imo State, P. M. B. 1526, Nigeria
  • 5Department of Pure and industrial chemistry, Uniport, Choba, Rivers State, Nigeria
  • 6Department of Soil Sciences and Technology, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria

Int. Res. J. Environment Sci., Volume 14, Issue (1), Pages 10-18, January,22 (2025)

Abstract

A careful study of the surface properties under different reagents and various materials could avail scientists the luxury of determining the nature with respect to intended use of particular activated carbon and then design the adsorbent according to a specified need. In this paper surface chemistry of five activated carbon prepared with various activating reagents was studied with the aim of identifying the surface functional groups and acid-base characteristics. IR Spectroscopy, elemental analysis and Boehm titration methods were used and data subjected to some chemometrics. Results revealed IR spectra typical of activated carbon materials with C=C, O-H and C-H stretches of benzene, acids and esters and unsaturated systems present. The H/C ratio of FAC6 decreased rapidly as in all other carbons. Oxygen containing active sites were predominant even though acidic sites showed high concentration than basic sites except for FAC6, FAC7 and FAC9. Total active sites showed that FAC10 (3.84 ± 0.36) > FAC8 (2.47 ± 0.15) > FAC9 (1.70 ± 0.41) > FAC7 (1.48 ± 0.26) > FAC6 (0.96 ± 0.18) whereas acid / base ratios showed that FAC6 (31) > FAC7 (2.7) > FAC8 (0.89) > FAC10 (0.79) > FAC9 (0.75). Physicochemical properties have an influence on the acid/base properties of adsorbents studied. Such information when added to the many pieces already existing could assist in predicting the characteristic properties of a particular activated carbon.

References

  1. Sellitti, C. J., Koenig, K., & Ishida, H. (1990)., Surface characterization of graphitized carbon fibers by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy., Carbon, 28(2), 221-228.
  2. Mangun, C. L., Benak, K. R., Economy, J., & Foster, K. L. (2001)., Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia., Carbon, 39(12), 1809-1820.
  3. Franz, M., Arafat, H. A., & Pinto, N. G. (2000)., Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon., Carbon, 38(13), 1807-1819.
  4. Fabish, T. J., & Echelishofer, S. D. (1984)., Surface-chemistry and the carbon-black work function., Carbon, 22(1), 19-38.
  5. Ebie, K., Li, F., Azuma, Y., Yuasa, A., & Hagishita, T. (2001)., Pore distribution effect of activated carbon in adsorbing organic micro-pollutants from natural water., Water Research, 35(1), 167-179.
  6. Pelekani, C., & Snoeyink, V. L. (1999)., Competitive adsorption in natural water: role of activated carbon pore size., Water Research, 33(5), 1209-1219.
  7. Ebie, K., Li, F., & Hagishita, T. (1995)., Effect of pore size distribution of activated carbon on the adsorption of humic substances and trace organic compounds., Water Supply, 13(3/4), 65-70.
  8. Mangun, C. L., Benak, K. R., Daley, M. A., & Economy, J. (1999)., Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties., Chem. Mater., 11(11), 3476-3483.
  9. Burchell, T. D. (Ed.). (1999)., Carbon materials for advanced technology. Pergamon Press.,
  10. Mangun, C. L. (1997)., Synthesis and characterization of chemically treated activated carbons for adsorption of trace contaminants (Doctoral dissertation, University of Illinois at Urbana-Champaign).,
  11. Toles, C. A., Marshall, W. E., & John, M. M. (1998)., Phosphoric acid activation of nutshells for metal and organic remediation: process optimization., Journal of Chemical Technology and Biotechnology, 72(4), 255-263.
  12. Verla, A. W., Horsfall, M., Verla, E. N., Spiff, A. I., &Ekpete, O. A. (2012)., Preparation and characterization of activated carbon from fluted pumpkin (Telfairia occidentalis Hook. F) seed shell., Asian Journal of Natural and Applied Sciences, 1(3), 39-50.
  13. Zawadzki, J. (1989)., Infrared spectroscopy in surface chemistry of carbons., Chemistry and physics of carbon, 21, 147-380.
  14. Menendez, J. A., Radovic, L. R., Xia, B., & Phillips, J. (1996)., Low-temperature generation of basic carbon surfaces by hydrogen spillover., Journal of Physical Chemistry, 100(43), 17243-17248.
  15. Bandoz, S. S., Evans, M. J., Halliop, B. E., & MacDonald, J. A. F. (1997)., Acidic and basic sites in the surface of porous carbon., Carbon, 35(9), 1361-1366.
  16. Meldrum, B. J., & Rochester, C. H. (1990)., In situ infrared study of the surface oxidation of activated carbon dispersed in potassium bromide., Journal of the Chemical Society, Faraday Transactions, 1, 86(11), 299.
  17. Pelekani, C., & Snoeyink, V. L. (2000)., Competitive adsorption between atrazine and methylene blue on activated carbon: The importance of pore size distribution., Carbon, 38(11), 1423-1436.
  18. Biniak, S., Szymański, G., Siedlewski, J., & Światkowski, A. (1997)., The characterization of activated carbons with oxygen and nitrogen surface groups., Carbon, 35(12), 1799-1810.
  19. Carrot, L. J. A., Nabais, J. M. V., & Ribeiro-Carrott, M. M. L. (2005)., Preparation of activated carbon fibres from acrylic textile fibre., Carbon, 39(11), 1543-1555.
  20. Castilla, C. M. (2000)., Changes in surface chemistry of activated carbon by wet oxidation., Carbon, 38(14), 1995-2001.
  21. Vicete, G. S. (1999)., Formation of oxygen structures by air activation. A study by FT-IR spectroscopy., Carbon, 37(10), 1517-1528.
  22. Verla, A. W., Horsfall, M., Verla, E. N., Spiff, A. I., & Ekpete, O. A. (2012)., Some aspects of surface chemistry of activated carbon prepared from fluted pumpkin (Telfairia occidentalis Hook. F.) by physical activation., International Journal of Chemical Science and Technology, 2(3), 224-230.
  23. MacDonald, R. J., Taglauer, E. C., &Wandelt, K. (Eds.). (2012)., Surface science: Principles and current applications., Springer Science & Business Media.
  24. Hu, Z. H., & Van Sant, E. F. (1995)., Chemical activation of elutrilithe producing carbonaceous aluminosilicate composite adsorbent., Carbon, 33(9), 1293-1300.
  25. Kaneko, Y., Abe, M., & Ogino, K. (1989)., Adsorption characteristics of organic compounds dissolved in water on surface-improved activated carbon fibers., Colloids and Surfaces, 37(1-3), 211-222.
  26. MacDonald, J. A. F., & Evans, M. J. B. (2002)., Adsorption and enthalpy of phenol on BPL carbon., Carbon, 40(4), 703-707.
  27. MacKay, G., Ramprasad, G., & Mowli, P. P. (1985)., Equilibrium studies for the adsorption of dye stuffs from aqueous solutions by low-cost materials., Water, Air, and Soil Pollution, 20(3-4), 272-282.
  28. Maduagwu, U. A. (2008)., The sorption kinetics of metal ions of copper (II) and lead (II) from aqueous solution using carbonized African Breadfruit (Treculiaafricana) husk biomass [Unpublished B.Sc. project work, Nnamdi Azikiwe University, Awka].,
  29. Shah, B. A., Shah, V. A., & Patel, H. D. (2011)., Alkaline hydrothermal conversion of agricultural waste bagasse-fly ash into zeolite: Utilization in dye removal from aqueous solution., International Journal of Waste Management, 7(1/2), 192-208.
  30. Verla, A. W., Nwosu, P. J. C., & Verla, E. N. (2008)., Physicochemical characteristics of produced water from crude oil processing and its public health implications., Tropical Journal of Biomedical and Allied Science Research, 2(1), 137-140.
  31. Verla, A. W., Verla, E. N., & Lukong, C. B. (2008)., Characterisation of pet-ether extracts from seeds of Monodoramyristica (Gaertn)., Tropical Journal of Biomedical and Allied Science Research, 2(1),137-140
  32. Vidic, R. D., Chang, M. T., & Thurnau, R. C. (1998)., Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated carbons., Journal of the Air & Waste Management Association, 48(3), 247-255.
  33. Xu, J., Zhao, J., Xu, J., Zhang, T., Li, X., Di, X., Ni, J., Wang, J., & Cen, J. (2014)., Influence of surface chemistry of activated carbon on the activity of gold/activated carbon catalyst in acetylene hydrochlorination., Industrial & Engineering Chemistry Research, 53(37), 14272-14281. doi:10.1021/ie502683
  34. López-Salas, N., Carriazo, D., Gutiérrez, M. C., Ferrer, M. L., Ania, C. O., Rubio, F., Tamayo, A., Fierro, J. L. G., & del Monte, F. (2016)., Tailoring the textural properties of hierarchical porous carbons using deep eutectic solvents., Journal of Materials Chemistry A, 4(23), 9146-9159. doi:10.1039/c6ta02704