Simulation of the influence of increasing current density in P- and N- branches of Thermoelectric generators on Thermal processes
Author Affiliations
- 1Fergana Polytechnic Institute, Fergana, Uzbekistan
- 2Fergana Polytechnic Institute, Fergana, Uzbekistan
Int. Res. J. Environment Sci., Volume 13, Issue (4), Pages 6-10, October,22 (2024)
Abstract
This article describes the process of modeling the influence of changes in electric current density in the branches of a thermoelectric generator on the processes of heat conversion in its volume. For this purpose Comsol Multiphysics software was used. Using the program, changes in the distribution of heat and temperature inside thermocouples with varying current density were analyzed. This is an important parameter for optimizing the efficiency of thermoelectric generators. The article also explains the processes of establishing electric currents in thermopile components, the phenomenon of heat transfer in solids, the thermoelectric effect, electromagnetic heat source, the limits of the thermoelectric effect and temperature coupling.
References
- Shostakovskij, P. (2010)., Termojelektricheskie istochniki alternativnogo jelektropitanija., Komponenty i tehnologii, (113), 131-138.
- Shelehov, I. Ju., Dorofeeva, N. L., Smirnov, E. I., & Dorofeeva, A. A. (2020)., Vozobnovljaemye istochniki jenergii: novye vozmozhnosti ispol, Izvestija vuzov. Investicii. Stroitel
- Kasimaxunova, A. M., Norbutaev, M., & Baratova, M. (2021)., Thermoelectric generator for rural conditions., Scientific progress, 2(6), 302-308.
- Abdurasulovich, N. M. (2022)., O‘zbekistonda termoelektrik generatorlardan foydalanish istiqbollari., So‘ngi ilmiy tadqiqotlar nazariyasi, 5(1), 269-273.
- Vinogradov, S. V., Gorbachjov, M. M., & Halykov, K. R. (2010)., Proektirovanie termojelektricheskogo generatora, rabotajushhego ot teploty vyhlopnyh gazov sudovyh dizelej. Vestnik Astrahanskogo gosudarstvennogo tehnicheskogo universiteta., Serija: Morskaja tehnika i tehnologija, (1), 89-94.
- Mamur, H., & Ahıska, R. (2014)., A review: Thermoelectric generators in renewable energy., International journal of renewable energy research, 4(1), 128-136.
- Timofeev, V. N., & Tihonov, N. F. (2016)., Ispol, European science, (3 (13)), 26-30.
- Hvesjuk, V. I., Ostanko, D. A., Skrjabin, A. S., Cygankov, P. A., Chelmodeev, R. I., & Chirkov, A. Ju. (2016)., Predel, Mashinostroenie i komp
- Bitschi, A. (2009)., Modelling of thermoelectric devices for electric power generation (Doctoral dissertation, ETH Zurich).,
- Kaljadin, O. V., & Korolev, K. G. (2018)., Matematicheskaja model, Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta, 14(6), 38-45.
- Vinogradov, S. V., Halykov, K. R., & Doan, N. K. (2011)., Metodika rascheta i ocenki parametrov jeksperimental, Serija: Morskaja tehnika i tehnologija, (1), 84-91.
- Habirov, F. F., & Vohmin, V. S. (2024)., Modelirovanie raboty termojelektricheskogo generatora v programmnom komplekse Ansys workbench., Izvestija Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, (1 (75)), 151-159.
- Korotkov, A. S., Loboda, V. V., Makarov, S. B., & Fel, Modelirovanie termojelektricheskih generatorov s ispol, Mikrojelektronika, 46(2), 142-150.
- Kostarev, V.S., Klimova, V.A., Taslykov, O.L., Kostarev, V.S., Klimova, V.A., & Tashlykov, O.L. (2017)., Modelirovanie processa estestvennogo ohlazhdenija radioizotopnogo termojelektricheskogo generatora.,
- Buslaev, R. D., & Loboda, V. V. (2019)., Modelirovanie termojelektricheskogo generatora na osnove silicida magnija po strukture Uni-Leg., Informatika, telekommunikacii i upravlenie, 12(1), 7-20.
- Hashim, H., Bomphrey, J. J., & Min, G. (2016)., Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system., Renewable energy, 87, 458-463.
- Riffat, S. B., & Ma, X. (2003)., Thermoelectrics: a review of present and potential applications., Applied thermal engineering, 23(8), 913-935.
- Marchenko, O. V., Kashin, A. P., Lozbin, V. I., & Maksimov, M. Z. (1995)., Metody rascheta termojelektricheskih generatorov.,