International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Source apportionment and short-term variation of Black Carbon and PM2.5 during Diwali Festivals over an industrial city in India

Author Affiliations

  • 1Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
  • 2Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
  • 3Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
  • 4Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India

Int. Res. J. Environment Sci., Volume 13, Issue (3), Pages 11-19, July,22 (2024)

Abstract

Fireworks play an important role in impacting the quality of air, which is experienced in the Diwali festival, where majority of population celebrate the festival with burning of crackers and oil lamps. The investigation is taken to challenge the variability, source apportionment of Black Carbon (BC) and PM2.5 during Diwali Festivals in 2020 and 2021 over an industrial city. This monitoring was conducted during two Diwali periods (DP1 and DP2), in which observations were made for 4 consecutive days i.e., Before-Diwali, Diwali, Chota-Diwali, After-Diwali. The level of BC ranged from 2.15 to 136.9μg m-3 and 2.5 to 185.6μg m-3 in DP1 and DP2 respectively. The concentration of BC in DP1 was found to be lower compared to DP2 due to less pre-suspended particulate matter after the first Covid19 waves. Likewise, there was a reduced concentration of PM2.5 at DP1 varied from 15.4 to 281.4μg m−3 as compared to DP2 ranged from 17.6 to 322.3μg m−3. The average BC was found to be 7.1, 14.38, 13.5, and 9.1μg m-3 in DP1 whereas 8.5, 17.4, 15.5 and 11.9μg m-3 in DP2 during consecutive days respectively. The source apportionment of BCBB and BCFF ratio was observed 39:61 and 46:54 in DP1 and DP2 respectively which indicates the larger bursting of crackers in DP2.

References

  1. Singh, A., Bloss , W. J., & Pope, F. D. (2015)., Remember, remember the 5th of November; gunpowder, particles and smog., Weather, 70(11), 320-324.
  2. Attri, A. K., Kumar, U., & Jain, V. K. (2001)., Formation of ozone by fireworks., Nature, 411(6841), 1015-1015.
  3. Adams, K., Greenbaum, D. S., Shaikh, R., van Erp, A. M., & Russell, A. G. (2015)., Particulate matter components, sources, and health: Systematic approaches to testing effects., Journal of the Air & Waste Management Association, 65(5), 544-558.
  4. Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., (2013)., Bounding the role of black carbon in the climate system: A scientific assessment., Journal of geophysical research: Atmospheres, 118(11), 5380-5552.
  5. Goel, V., Mishra, S. K., Ahlawat, A., Sharma, C., Vijayan, N., Radhakrishnan, S. R., Dimri, A. P., &Kotnala, R. K. (2018)., Effect of reduced traffic density on characteristics of particulate matter over Delhi., Current Science, 115(2), 315-319.
  6. Goel, V., Mishra, S. K., Ahlawat, A., Kumar, P., Senguttuvan, T. D., Sharma, C., & Reid, J. S. (2020)., Insights into coarse particle optics based on field evidence of particle morphology, chemical composition and internal structure., Atmospheric environment, 232, 117338.
  7. Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., ... & Sharma, C. (2017)., Chemical characteristics and source apportionment of PM 2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India., Environmental Science and Pollution Research, 24, 14637-14656.
  8. Disselkamp, R. S., Carpenter, M. A., Cowin, J. P., Berkowitz, C. M., Chapman, E. G., Zaveri, R. A., & Laulainen, N. S. (2000)., Ozone loss in soot aerosols., Journal of Geophysical Research: Atmospheres, 105(D8), 9767-9771.
  9. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., ... & Wild, M. (2005)., Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle., Proceedings of the National Academy of Sciences, 102(15), 5326-5333.
  10. Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., & Winker, D. (2007)., Warming trends in Asia amplified by brown cloud solar absorption., Nature, 448(7153), 575-578.
  11. Twomey, S. (1977)., Atmospheric aerosols., Elsevier, New York.
  12. Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., & Painter, T. H. (2018)., Radiative forcing by light-absorbing particles in snow., Nature Climate Change, 8(11), 964-971.
  13. Zhang, Y., Gao, T., Kang, S., Sprenger, M., Tao, S., Du, W., ... & Meng, W. (2020)., Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia., Science of The Total Environment, 740, 140056.
  14. Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002)., Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250-2253., undefined
  15. Hazarika, N., Srivastava, A., & Das, A. (2017)., Quantification of particle bound metallic load and PAHs in urban environment of Delhi, India: Source and toxicity assessment., Sustainable Cities and Society, 29, 58-67.
  16. Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., Fischer, P., Brunekreef, B. & Krzyzanowski, M. (2012)., Health effects of black carbon., World Health Organization. Regional Office for Europe.
  17. Singh, P., Roy, A., Bhasin, D., Kapoor, M., Ravi, S., & Dey, S. (2021)., Crop Fires and Cardiovascular Health–A Study from North India., SSM-Population Health, 14, 100757.
  18. Chen, L.H., Knutsen, S.F., Shavlik, D., Beeson, W.L., Petersen, F., Ghamsary, M., Abbey, D. (2005)., The association between fatal coronary heart disease and ambient particulate air pollution: are females at greater risk? Environ., Health Perspect., 113(12), 1723.
  19. Ambade, B., & Sethi, S. S. (2021)., Health risk assessment and characterization of polycyclic aromatic hydrocarbon from the hydrosphere., Journal of Hazardous, Toxic, and Radioactive Waste, 25(2), 05020008.
  20. Ambade, B. (2018)., The air pollution during Diwali festival by the burning of fireworks in Jamshedpur city, India., Urban climate, 26, 149-160.
  21. Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., Turkgulu, B., Kumar, G.A., Khare, M., Beig, G. and Gupta, T., & Dandona, L. (2021)., Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019., The Lancet Planetary Health, 5(1), 25-38.
  22. Tiwari, S., Chate, D. M., Pragya, P., Ali, K., & Bisht, D. S. (2012)., Variations in mass of the PM10, PM2. 5 and PM1 during the monsoon and the winter at New Delhi., Aerosol and Air Quality Research, 12(1), 20-29.
  23. Liu, S., Krewski, D., Shi, Y., Chen, Y., & Burnett, R. T. (2003)., Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada., Environmental health perspectives, 111(14), 1773-1778.
  24. Hansen, A. D., Rosen, H., & Novakov, T. (1984)., The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles., Science of the Total Environment, 36, 191-196.
  25. Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., & Hansen, A. D. A. (2015)., The dual-spot Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation., Atmospheric measurement techniques, 8(5), 1965-1979.
  26. Sandradewi, J., Prévôt, A. S., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., & Baltensperger, U. R. S. (2008)., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter., Environmental science & technology, 42(9), 3316-3323.
  27. Ambade, B., & Sankar, T. K. (2021)., Source apportionment and health risks assessment of black carbon aerosols in an urban atmosphere in East India., Journal of Atmospheric Chemistry, 78, 177-191.
  28. Favez, O., El Haddad, I., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.L., Besombes, J.L., Personnaz, M.B., Sciare, J., Wortham, H., George C.,& D, Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)., Atmospheric Chemistry and Physics, 10(12), 5295-5314.
  29. Fuller, G. W., Tremper, A. H., Baker, T. D., Yttri, K. E., & Butterfield, D. (2014)., Contribution of wood burning to PM10 in London., Atmospheric environment, 87, 87-94.
  30. Olson, M. R., Victoria Garcia, M., Robinson, M. A., Van Rooy, P., Dietenberger, M. A., Bergin, M., & Schauer, J. J. (2015)., Investigation of black and brown carbon multiple‐wavelength‐dependent light absorption from biomass and fossil fuel combustion source emissions., Journal of Geophysical Research: Atmospheres, 120(13), 6682-6697.
  31. Harrison, R. M., Beddows, D. C., Jones, A. M., Calvo, A., Alves, C., & Pio, C. (2013)., An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations., Atmospheric Environment, 80, 540-548.
  32. Pathak, B., Bharali, C., Biswas, J., & Bhuyan, P. K. (2013)., Firework induced large increase in trace gases and black carbon at Dibrugarh, India., Journal of Earth Science and Engineering, 3(8), 540.
  33. Ghei, D., & Sane, R. (2018)., Estimates of air pollution in Delhi from the burning of firecrackers during the festival of Diwali., PloS one, 13(8), -0200371.
  34. Pathak, B., Biswas, J., Bharali, C., & Bhuyan, P. K. (2015)., Short term introduction of pollutants into the atmosphere at a location in the Brahmaputra Basin: a case study., Atmospheric Pollution Research, 6(2), 220-229.
  35. Goel, V., Hazarika, N., Kumar, M., & Singh, V. (2021)., Source apportionment of black carbon over Delhi: A case study of extreme biomass burning events and Diwali festival., Urban Climate, 39, 100926.
  36. Kurwadkar, S., Sankar, T. K., Kumar, A., Ambade, B., Gautam, S., Gautam, A. S., Biswas, J.K. & Salam, M. A. (2023)., Emissions of black carbon and polycyclic aromatic hydrocarbons: Potential implications of cultural practices during the Covid-19 pandemic., Gondwana Research, 114, 4-14.
  37. Devara, P. C. S., Alam, M. P., Dumka, U. C., Tiwari, S., & Srivastava, A. K. (2018)., Anomalous features of black carbon and particulate matter observed over rural station during Diwali festival of 2015., In Environmental Pollution: Select Proceedings of ICWEES-2016 (pp. 293-308). Springer Singapore.