International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

AI-Powered Innovations in Plant Pathogen Detection: Transforming Agriculture through Technology

Author Affiliations

  • 1Plant Pathology Laboratory, Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India

Int. Res. J. Biological Sci., Volume 14, Issue (3), Pages 30-37, August,10 (2025)

Abstract

The integration of artificial intelligence (AI) into plant pathogen detection is transforming agricultural practices by enabling more efficient, accurate, and scalable disease management solutions. Traditional diagnostic methods, while effective, often require significant time, expertise and laboratory resources, limiting their application in large-scale and real-time scenarios. AI-powered innovations, including machine learning (ML), deep learning (DL) and computer vision, are revolutionizing the detection and diagnosis of plant diseases. These technologies analyze vast datasets from sources such as high-resolution imaging, genomic sequences, environmental sensors, and remote sensing platforms to identify pathogens with unprecedented precision. AI-driven tools, such as mobile-based diagnostic apps, autonomous drones, and predictive modeling systems, empower farmers and agricultural stakeholders with real-time insights into disease outbreaks and progression. Additionally, AI enhances the interpretation of metagenomic data, facilitating the identification of novel and unculturable pathogens. This paper explores the transformative potential of AI in plant pathogen detection, highlighting its contributions to sustainable agriculture, early disease management, and food security. It also addresses challenges such as data availability, model reliability, and ethical considerations, paving the way for future advancements in AI-driven plant pathology.

References

  1. Flood, J. (2010)., The importance of plant health to food security., Food Security, 2(3), 215–231. https://doi.org/10.1007/S12571-010-0072-5
  2. Manzoor, S., Mir, Z. A., Wani, T. A., Gulzar, H., Nabi, Z., Parveen, S., Rather, T. R., & Nabi, S. U. (2024)., Recent advances in diagnostic approaches for plant pathogen detection (pp. 17–41)., https://doi.org/10.58532/ v3bfbt3p1ch2
  3. Kumar, P., Akhtar, J., Kandan, A., Kumar, S., Batra, R., & Dubey, S. (2016)., Advance Detection Techniques of Phytopathogenic Fungi: Current Trends and Future Perspectives (pp. 265–298)., Springer International Publishing. https://doi.org/10.1007/978-3-319-27312-9_12
  4. Prasanna, N., Choudhary, S., Kumar, S., Choudhary, M., Meena, P. K. P., Saloni, S., & Ghanghas, R. (2024)., Advances in Plant Disease Diagnostics and Surveillance- A review., Plant cell biotechnology and molecular biology, 25(11–12), 137–150. https://doi.org/10.56557/ pcbmb/ 2024/v25i11-128918
  5. Gupta, A., Vaidya, A., & Sapra, A. (2025)., Smart Plant Monitoring System and Chatbot., International Journal For Multidisciplinary Research, 7(1). https://doi.org/ 10.36948/ ijfmr.2025.v07i01.35328
  6. Verma, N., Shukla, M., Kulkarni, R., Srivastava, K., Claudic, B., Savara, J., Mathew, M. J., Maurya, R., Bhattacharjee, G., Singh, V., & Pandya, A. (2022)., Emerging Extraction and Diagnostic Tools for Detection of Plant Pathogens: Recent Trends, Challenges, and Future Scope., ACS Agricultural Science & Technology, 2(5), 858–881. https://doi.org/10.1021/acsagscitech.2c00150
  7. Sharma, P., & Sharma, S. K. (2016)., Paradigm Shift in Plant Disease Diagnostics: A Journey from Conventional Diagnostics to Nano-diagnostics (pp. 237–264)., Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_11
  8. Verma, N., Shukla, M., Kulkarni, R., Srivastava, K., Claudic, B., Savara, J., Mathew, M. J., Maurya, R., Bhattacharjee, G., Singh, V., & Pandya, A. (2022)., Emerging Extraction and Diagnostic Tools for Detection of Plant Pathogens: Recent Trends, Challenges, and Future Scope., ACS Agricultural Science & Technology, 2(5), 858–881. https://doi.org/10.1021/acsagscitech.2c00150
  9. Priyadarshini, B., Subhadarshini, S., Pattnayak, A., & Nayak, S. (2024)., Artificial intelligence in agriculture (pp. 59–71)., https://doi.org/10.58532/v3bcag24ch6
  10. Sathya, R., Senthilvadivu, S., Ananthi, S., Bharathi, V. C., & Revathy, G. (2023)., Vision Based Plant Leaf Disease Detection and Recognition Model Using Machine Learning Techniques., 458–464. https://doi.org/10.1109/iceca 58529.2023.10395620
  11. Akbar, M. J. U., Kamarulzaman, S. F., & Tusher, E. H. (2023)., Plant Stem Disease Detection Using Machine Learning Approaches., 1–8. https://doi.org/10.1109/ icccnt56998.2023.10307074
  12. Varshney, D., Babukhanwala, B., Khan, J., Saxena, D., & Singh, A. (2022)., Plant Disease Detection Using Machine Learning Techniques., 3rd International Conference for Emerging Technology (INCET), 1–5. https://doi.org/ 10.1109/incet54531.2022.9824653
  13. Sharma, S., & Vardhan, M. (2024)., Enhanced Plant Disease Detection Using a Custom CNN with Advanced Feature Extraction Techniques., 1–7. https://doi.org/10. 1109/icccnt61001.2024.10725398
  14. Lawrence, M. O., & Ogedebe, P. (2024)., Detection of Image-based Plant Leaf Diseases Using Convolutional Neural Networks., 1–6. https://doi.org/10.1109/seb4sdg 60871.2024.10630105
  15. Sushanth, T., Siddarda, T. S., Sathvika, A., Shruthi, A. S. S., Lekha, A., & Kumar, T. S. (2024)., Time Series Forecasting using RNN., Indian Scientific Journal of Research in Engineering and Management, 08(11), 1–8. https://doi.org/10.55041/ijsrem39164
  16. Prasad, P. Y., Ramu, M., Reshma, S., Priya, R. C., Anusha, P., & Reddy, B. L. (2024)., Leaf Lens: An Intelligent Vision for Plant Disease Diagnosis using Deep Learning., 1–5. https://doi.org/10.1109/aimla59606.2024.10531537
  17. Chand, N., Satpathi, A., Gehlot, T., &Tripathi, A. (2024)., Potential of artificial intelligence to combat challenges in transforming agriculture (pp. 192–201)., https://doi.org/ 10.58532/v3bcag6p1ch16
  18. Lajurkar, M. R., Barve, A. N., Waghmare, S. J., Karande, R., Kharbade, S. B., Bagde, A., & Sathe, S. K. (2025)., Applications of Drone for Crop Disease Detection and Monitoring: A Review., Asian Research Journal of Agriculture, 18(1), 15–25. https://doi.org/10.9734/ arja/2025/v18i1638
  19. Abbas, A., Alami, M., Alrefaei, A. F., Abbas, Q., Naqvi, S. A. H., Rao, M. J., Abd El-GleelMosa, W. F., Hussain, A., Hassan, M., & Zhou, L. (2023)., Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture., Agronomy, 13(6), 1524. https://doi.org/10.3390/agronomy13061524
  20. Prasanna, N., Choudhary, S., Kumar, S., Choudhary, M., Meena, P. K. P., Saloni, S., & Ghanghas, R. (2024)., Advances in Plant Disease Diagnostics and Surveillance- A review., Plant cell biotechnology and molecular biology, 25(11–12), 137–150. https://doi.org/10.56557/pcbmb/ 2024/v25i11-128918
  21. Gupta, N. (2025)., Multidimensional and Revolutionary Relevance of AI in Agriculture., Advances in Environmental Engineering and Green Technologies Book Series, 145–174. https://doi.org/10.4018/979-8-3693-7483-2.ch006
  22. Majeed, Y., Ojo, M., & Zahid, A. (2024)., Standalone edge AI-based solution for Tomato diseases detection., Smart Agricultural Technology, https://doi.org/10.1016/j.atech. 2024.100547
  23. Jafar, A., Bibi, N., Naqvi, R., Sadeghi-Niaraki, A., & Jeong, D. (2024)., Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations., Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1356260
  24. Akinyemi, A., Fadele, E., & Ojeleye, A. (2023)., Exploring a mobile application for pest and disease symptomatic diagnosis in food crops in Nigeria: Implications of its use by smallholder farmers in sub-Saharan Africa., Ife Journal of Science. https://doi.org/10.4314/ijs.v25i1.1.
  25. Mrisho, L., Mbilinyi, N., Ndalahwa, M., Ramcharan, A., Kehs, A., McCloskey, P., Murithi, H., Hughes, D., & Legg, J. (2020)., Accuracy of a Smartphone-Based Object Detection Model, Plant Village Nuru, in Identifying the Foliar Symptoms of the Viral Diseases of Cassava–CMD and CBSD., Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.590889.
  26. Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., &Pechlivani, E. (2024)., Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence., Technologies. https://doi.org/ 10.3390/ technologies12070101.
  27. Kanagala, S., Khalaifin, M., Al-Harthi, A., & Al-Ahdhami, S. (2023)., Greenhouse Farm Monitoring is Automated with Smart Controls., International Academic Journal of Science and Engineering. https://doi.org/10.9756/ iajse/ v10i1/iajse1005.
  28. Shanto, S., Rahman, M., Oasik, J., & Hossain, H. (2023)., Smart Greenhouse Monitoring System Using Blynk IoT App., Journal of Engineering Research and Reports, https://doi.org/10.9734/jerr/2023/v25i2883.
  29. Chin, R., Catal, C., & Kassahun, A. (2023)., Plant disease detection using drones in precision agriculture., Precision Agriculture, 24, 1663-1682. https://doi.org/10.1007/ s11119-023-10014-y
  30. Refaai, M., Dattu, V., Gireesh, N., Dixit, E., Sandeep, C., & Christopher, D. (2022)., Application of IoT-Based Drones in Precision Agriculture for Pest Control., Advances in Materials Science and Engineering. https://doi.org/ 10.1155/2022/1160258
  31. Shafik, W., Tufail, A., Namoun, A., De Silva, L., & Apong, R. (2023)., A Systematic Literature Review on Plant Disease Detection: Motivations, Classification Techniques, Datasets, Challenges, and Future Trends., IEEE Access, 11, 59174-59203. https://doi.org/10.1109/ ACCESS.2023. 3284760
  32. Lee, S., Liaw, Z., Chai, Y., Ng, S., Bonnet, P., Goëau, H., & Joly, A. (2024)., Revolutionizing Plant Pathogen Conservation: The Past, Present, and Future of AI in Preserving Natural Ecosystems., Biodiversity Information Science and Standards. https://doi.org/10.3897/biss.8. 133055
  33. Dara, R., Fard, S., & Kaur, J. (2022)., Recommendations for ethical and responsible use of artificial intelligence in digital agriculture., Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.884192
  34. Rezaei, M., Diepeveen, D., Laga, H., Jones, M., &Sohel, F. (2024)., Plant disease recognition in a low data scenario using few-shot learning., Comput. Electron. Agric., 219, 108812. https://doi.org/10.1016/j.compag.2024.108812
  35. Garrett, K., Bebber, D., Etherton, B., Gold, K., Sulá, A., & Selvaraj, M. (2022)., Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation., Annual review of phytopathology. https:// doi.org/10.1146/annurev-phyto-021021-042636.