International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Utilization of Humulene for the Silkworm Cocoon and Silk yield

Author Affiliations

  • 1Department of Botany, Shri Shivaji Mahavidyalaya, Barshi Shivaji Nagar Barshi Tal-Barshi, Disrict-Solapur -413401, India
  • 2Sharadabai Pawar Mahila Arts, Commerce and Science College, Sharadanagar Tal. Baramati, District-Pune 413115, India

Int. Res. J. Biological Sci., Volume 13, Issue (4), Pages 37-47, November,10 (2024)

Abstract

Humulene sesquiterpene compound with single ring and three units of isoprene. The present attempt was aimed to utilize humulene through acetone for applications (topical) on the second day to the fifth larval stage of double hybrid race of silkworm, Bombyx mori (L). The application humulene through acetone was resulted into yield of qualitative and quantitative silk cocoons and silk fibers. The entire cocoon weight (without floss), weight of shell of silk cocoon, weight of pupae. There was significant improvement in the silk shell percentage (mathematical operation of division of shell weight by the weight of whole cocoon. Resulted quotient multiplied by hundred)and scale of denier of silk through the utilization of spray of humulene solution to the fifth larval stage of double hybrid race of silkworm, Bombyx mori (L). The readings: 2.967** (±0.879); 0.843** (±0.137); 2.124 and 28.412*** respectively belong to weight of entire cocoon, weight of silk shell, weigh of pupae and the silk shell percentage (ratio of shell to the entire cocoon). The readings: 1489.63* (±229.53); 0.831** (±0.118) and 5.020*** respectively belong to silk fiber length (meter), silk fiber weight (gram) and the scale of denier. As a terpene compound, humulene exhibits probable activity analogous with natural Juvenile Hormone (JH) and may deserve applicable aspects of its utilization as efficient factor for growth of insects like silkworm. The schedule of spraying humulene through acetone should be introduced in the rearing of larval stages of silkworm for yield of qualitative and quantitative silk cocoons and silk fibers.

References

  1. Biancardi, E. and Wagner, T. (1989)., llluppolo da birra in Italia., Annali dell
  2. McCallum, J. L., Nabuurs, M. H., Gallant, S. T., Kirby, C. W., & Mills, A. A. (2019)., Phytochemical characterization of wild hops (Humulus lupulus ssp. lupuloides) germplasm resources from the maritimes region of Canada., Frontiers in plant science, 10, 1438.
  3. Zanoli, P., & Zavatti, M. (2008)., Pharmacognostic and pharmacological profile of Humulus lupulus L., Journal of ethnopharmacology, 116(3), 383-396.
  4. Singh, T., & Mathur, A. (2024)., Humulus lupulus, Plant of Economic and Therapeutic Importance., Current Applied Science And Technology, e0258585-e0258585.
  5. Brattström, A. (2009)., Humulus Lupulus (hops), is there any evidence for central nervous effects related to sleep., Acta Hort, 848, 173-178.
  6. Tagasgira, M., Watanabe, M., & Uemitsu, N. (1995)., Antioxidative activity of hop bitter acids and their analogues., Bioscience, biotechnology, and biochemistry, 59(4), 740-742.
  7. Yamamoto, K., Wang, J., Yamamoto, S., & Tobe, H. (2000)., Suppression of cyclooxygenase-2 gene transcription by humulon of beer hop extract studied with reference to glucocorticoid., FEBS letters, 465(2-3), 103-106.
  8. Liu, M., Hansen, P. E., Wang, G., Qiu, L., Dong, J., Yin, H., ... & Miao, J. (2015)., Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus)., Molecules, 20(1), 754-779.
  9. Lin, M., Xiang, D., Chen, X., & Huo, H. (2019)., Role of characteristic components of Humulus lupulus in promoting human health., Journal of agricultural and food chemistry, 67(30), 8291-8302.
  10. Simpson, W. J., & Smith, A. R. W. (1992)., Factors affecting antibacterial activity of hop compounds and their derivatives., Journal of Applied bacteriology, 72(4), 327-334.
  11. Knez Hrnčič, M., Španinger, E., Košir, I. J., Knez, Ž., & Bren, U. (2019)., Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects., Nutrients, 11(2), 257.
  12. Muzykiewicz, A., Nowak, A., Zielonka-Brzezicka, J., Florkowska, K., Duchnik, W. and Klimowicz, A. (2019)., Comparison of antioxidant activity of extracts of hop leaves harvested in different years., Herba Polonica, 65(3), 1-9.
  13. Carbone, K., & Gervasi, F. (2022)., An updated review of the genus Humulus: a valuable source of bioactive compounds for health and disease prevention., Plants, 11(24), 3434.
  14. Van Cleemput, M., Cattoor, K., De Bosscher, K., Haegeman, G., De Keukeleire, D., & Heyerick, A. (2009)., Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds., Journal of natural products, 72(6), 1220-1230.
  15. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., ... & Buhler, D. R. (1999)., Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines., Food and Chemical Toxicology, 37(4), 271-285.
  16. Shimamura, M., Hazato, T., Ashino, H., Yamamoto, Y., Iwasaki, E., Tobe, H., Yamamoto, K. and Yamamoto, S., (2001)., Inhibition of angiogenesis by humulone, a bitter acid from beer hop., Biochemical and Biophysical Research Communications, 289(1), 220-224.
  17. Chen, W. J., & Lin, J. K. (2004)., Mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by Fas and caspase cascades., Journal of Agricultural and Food Chemistry, 52(1), 55-64.
  18. Krofta, K., Hervert, J., Mikyška, A., & Dušek, M. (2019)., Hop beta acids-from cones to beer., Acta Hortic, 1236, 15-22.
  19. Tursun, E., Li, Z., & Aisa, H. A. (2021)., Isolation and identification of soft resins from Humulus lupulus L., Industrial Crops and Products, 172, 114014.
  20. Forino, M., Pace, S., Chianese, G., Santagostini, L., Werner, M., Weinigel, C., ... & Taglialatela-Scafati, O. (2016)., Humudifucol and bioactive prenylated polyphenols from hops (Humulus lupulus cv. “Cascade”)., Journal of Natural Products, 79(3), 590-597.
  21. Lin, M., Xiang, D., Chen, X., & Huo, H. (2019)., Role of characteristic components of Humulus lupulus in promoting human health., Journal of agricultural and food chemistry, 67(30), 8291-8302.
  22. Aldred, E.M., Buck, C. and Vall, K. (2009)., Terpenes. In: E.M. Aldred, C. Buck and K. Vall, eds. Pharmacology., Edinburgh: Churchill Livingstone, 167-174.
  23. Passos, G. F., Fernandes, E. S., da Cunha, F. M., Ferreira, J., Pianowski, L. F., Campos, M. M., & Calixto, J. B. (2007)., Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea., Journal of ethnopharmacology, 110(2), 323-333.
  24. Fernandes, E. S., Passos, G. F., Medeiros, R., da Cunha, F. M., Ferreira, J., Campos, M. M., ... & Calixto, J. B. (2007)., Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea., European journal of pharmacology, 569(3), 228-236.
  25. da Silva, R. C. S., Milet-Pinheiro, P., Bezerra da Silva, P. C., da Silva, A. G., da Silva, M. V., Navarro, D. M. D. A. F., & da Silva, N. H. (2015)., (E)-caryophyllene and α-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of Commiphora leptophloeos leaf oil., PLoS One, 10(12), e0144586.
  26. Zaoral, M., & Slama, K. (1970)., Peptides with juvenile hormone activity., Science, 170(3953), 92-93.
  27. Williams, C. M. (1956)., The juvenile hormone of insects., Nature, 178(4526), 212-213.
  28. Slama, K. A. R. E. L. (1971)., Insect juvenile hormone analogues., Annual review of biochemistry, 40(1), 1079-1102.
  29. Gopakumar, B., Ambika, B., & Prabhu, V. K. K. (1977)., Juvenomimetic activity in some South Indian plants and the probable cause of this activity in Morus alba.,
  30. Khyade, V. B., Patil, S. B., Khyade, S. V., & Bhawane, G. P. (2002)., Influence of acetone maceratives of Vitis vinifera on the larval parameters of silk worm, Bombyx mori (L)., Indian journal of comparative animal physiology, 20, 14-18.
  31. Khyade, V. B. (2004)., Influence of juvenoids on silkworm, Bombyx Mori.,
  32. Williams, C. M. (1956)., The juvenile hormone of insects.,
  33. Zaoral, M., & Slama, K. (1970)., Peptides with juvenile hormone activity., Science, 170(3953), 92-93.
  34. Slama, K. A. R. E. L. (1971)., Insect juvenile hormone analogues., Annual review of biochemistry, 40(1), 1079-1102.
  35. Gopakumar B., Ambika, B. and Prabhu, V. K. K. (1977)., Juvenomimetic activity in some south Indian plants and their probable cause of this activity in Morus alba (L)., Entomon, 2, 259-261.
  36. Khyade, V. B., Patil, S. B., Khyade, S. V., & Bhawane, G. P. (2003)., Influence of acetone macerative of Vitisvinifera on the economic parameters of silkworm Bombyx mori (L)., Indian journal of comparative animal physiology, 21(1), 28-32.
  37. Mamatha, D. N., Nagalakshmma, K. and Rajeshwara Rao, M. (1999)., Impact of selected Juvenile Hormone Mimics on the organic constituents of silk worm, Bombyx mori (L).,
  38. Martin, D. M., Gershenzon, J., & Bohlmann, J. (2003)., Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce., Plant physiology, 132(3), 1586-1599.
  39. Pichersky, E., Noel, J. P., & Dudareva, N. (2006)., Biosynthesis of plant volatiles: nature, Science, 311(5762), 808-811.
  40. Vitthalrao B. Khyade and Karel Slama (2015)., Screening of acetone solution of FME and Selected Monoterpene Compounds for Juvenile Hormone Activity Through Changes in pattern of Chitin Deposition in the Integument of Fifth instar larvae of silkworm, Bombyx mori (L) (PM x CSR2)., IJBRITISH, 2(3), 68-90.
  41. Belal, A., Elballal, M. S., Al-Karmalawy, A. A., Hassan, A. H., Roh, E. J., Ghoneim, M. M., ... & Elanany, M. A. (2024)., Exploring the sedative properties of natural molecules from hop cones (Humulus lupulus) as promising natural anxiolytics through GABA receptors and the human serotonin transporter., Frontiers in Chemistry, 12, 1425485.
  42. Krishnaswami, S., Narasimhana, M. N., Suryanarayana, S. K. and Kumaraj, S. (1978)., Sericulture Manual –ll: Silk worm rearing., F A O, United Nation’s Rome: 131.
  43. Khyade, V. B., Ghate, D. P., & Sarwade, J. P. (2006)., Effect of methoprene on silk worm, Bombyx mori (L)., Journal of Zoological Society of India: Environment and Development, 49-60.
  44. Khyade, V. B., Machale, S. S., Sarwade, J. P., Patil, S. B., & Deshpande, S. H. (2006)., Screening of plant extractives for juvenoid activity in silk worm, Bombyx mori (L)., Journal of Zoological Society of India: Environment and Development, 61-77.
  45. Khyade, V. B., Patil, P. M., Jaybhay, K. R., Gaikwad, R. G., Mhamane, G. V., Khyade, V. V., ... & Jagtap, S. G. (2007)., Effect of digoxin on economic parameters of silk worm, Bombyx mori (L)., Journal of Zoological Society of India: Bioinformatics, 23-31.
  46. Bailey, N. T. (1955)., Some problems in the statistical analysis of epidemic data., Journal of the Royal Statistical Society. Series B (Methodological), 35-68.
  47. Khyade, V. B., & Eigen, M. (2018)., Key role of statistics for the fortification of concepts in agricultural studies., International Academic Journal of Innovative Research, 5(3), 32-46.
  48. Khyade, V. B., & Altman, S. (2018)., Use of Herbal Terpenoid for topical application to fifth instars of silkworm, Bombyx mori (L)., In Abstract book: International Conference On Doubling the Farmers Income through Innovative Approaches, 9-11.
  49. Shinde, M. R. R., Dongare, S. K., & Khyade, V. B. (2018). Qualitative Silk Cocoons in Silkworm, Bombyx Mori (L) Through the Topical Application of Acetone Macerative of Powder of Ganoderma Fruiting Body and Acetone Solution of Its Triterpenoid (Lucidone–D)., undefined, undefined
  50. Nalwade, M. M., Pondkule, K. A., & Khyade, V. B. (2018)., The reflection of feeding the mulberry leaves treated with water solution of seed powder of Syzigium cumini (L) into Profiles of Protein (total) in the fifth instar larvae of silk worm, Bombyx mori (L) Race-bivoltine, crossbreed: [(CSR6 x CSR26)] x [CSR2 x CSR27)].,
  51. Kakade, S. R., Lonkar, P. R., & Khyade, V. B. (2018)., Influence of Aqueous Solution of Agaricus bisporus (L) Treated Mulberry Leaves on the Quality of cocoons and silk filament in silkworm, Bombyx mori (L)., International Journal of Scientific Studies, 3(5), 39-51.