Molecular detection of microcystin synthetase genes (mcy genes) and semi-quantitative immunological detection of the production of microcystin toxin in vitro-grown pure cultures of cyanobacteria
Author Affiliations
- 1Department of Biological Science, Rani Durgavati University, Jabalpur, MP, India
- 2Department of Biological Science, Rani Durgavati University, Jabalpur, MP, India
- 3Department of Biological Science, Rani Durgavati University, Jabalpur, MP, India
- 4Department of Biological Science, Rani Durgavati University, Jabalpur, MP, India
Int. Res. J. Biological Sci., Volume 13, Issue (4), Pages 1-10, November,10 (2024)
Abstract
Laboratory mass cultures were established for cyanobacterial strains M. aeruginosa, O. laetevirens var. minimus, A. fertilissima, P. uncinatum, and S. elongatus. The growth of these cultures was assessed by monitoring turbidity, chlorophyll concentration, and protein content. After an 18-day inoculation period, the maximum growth of pure cultures was observed. Well-developed cultures were concentrated using centrifugation and subsequently lyophilized to preserve them in powdered form. DNA extraction was performed on the lyophilized cultures, resulting in clear DNA bands just below the wells. The quality of the extracted DNA, as determined by the A260/280 ratio, ranged from 1.6 to 1.8. The genes mcyABDE were successfully amplified in M. aeruginosa and O. laetevirens var. minimus, while A. fertilissima and P. uncinatum showed amplification of mcyABD and mcyABE genes, respectively. No amplification was observed in S. elongatus. Using a semi-quantitative ELISA technique, a significant concentration of Microcystin was detected only in Microcystis aeruginosa, at a level of 0.5 ppb, whereas the other cultures produced trace amounts below 0.5 ppb.
References
- Paerl, H. W., & Otten, T. G. (2013)., Harmful cyanobacterial blooms: causes, consequences, and controls., Microbial ecology, 65, 995-1010.
- Zhang, M., Duan, H., Shi, X., Yu, Y., & Kong, F. (2012)., Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change., Water Research, 46(2), 442-452.
- Berry, J. P., Gantar, M., Gawley, R. E., Wang, M., & Rein, K. S. (2011)., Pharmacology and toxicology of Pseudanabaena sp. isolated from cyanobacterial blooms found in Florida., Toxicon, 57(6), 762-769.
- Sivonen, K., & Jones, G. (1999)., Cyanobacterial toxins., Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 1, 43-112.
- Prinsep, M. R., Caplan, F. R., Moore, R. E., Patterson, G. M. L., & Honkanen, R. E. (1992)., Microcystin-LR is a potent inhibitor of protein phosphatases 1 and 2A., Journal of Biological Chemistry, 267(31), 21512-21517.
- Oksanen, I., Jokela, J., Fewer, D. P., Wahlsten, M., Rikkinen, J., & Sivonen, K. (2004)., Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I., Applied and Environmental Microbiology, 70(10), 5756-5763.
- Izaguirre, G., Jungblut, A. D., Neilan, B. A., & Bittencourt-Oliveira, M. D. C. (2007)., Phormidium: a possible cause of an earthy/musty taste episode in Saquarema Lagoon, Brazil., Water Science and Technology, 55(5), 265-272.
- Runnegar, M. T., Kong, S. M., Zhong, Y. Z., & Lu, S. C. (1995a)., Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes., Biochemical Pharmacology, 49(2), 219-225.
- Welker, M., & Von Döhren, H. (2006)., Cyanobacterial peptides - nature, FEMS microbiology reviews, 30(4), 530-563.
- Wharton, S. P., Jones, G. J., & Neal, R. (2019)., Protein phosphatase inhibition assay (PPIA) in detection of microcystins in water samples: optimization and validation., Toxicon, 165, 32-39.
- Nishiwaki‐Matsushima, R., Nishiwaki, S., Ohta, T., Yoshizawa, S., Suganuma, M., Harada, K. I., ... & Fujiki, H. (1991)., Structure‐function relationships of microcystins, liver tumor promoters, in interaction with protein phosphatase., Japanese Journal of Cancer Research, 82(9), 993-996.
- Ohta, T., Sueoka, E., Iida, N., Komori, A., Suganuma, M., Nishiwaki, R., ... & Fujiki, H. (1994)., Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver., Cancer research, 54(24), 6402-6406.
- Lankiewicz, J., Volmer, D. A., & Aranda-Rodriguez, R. (2000)., Hepatotoxic microcystins in natural health products: a case study on cyanobacterial contamination in spirulina tablets analyzed by liquid chromatography–tandem mass spectrometry., Journal of Agricultural and Food Chemistry, 48(12), 5453-5459.
- Nodberg, H., & Anner, B. M. (2001)., Mechanisms of microcystin-induced apoptosis and secondary necrosis in rat hepatocytes., World Journal of Gastroenterology, 7(3), 392-395.
- Snaith, H. M., Armstrong, D. J., & Rowlands, D. J. (1996)., Microcystin-induced protein phosphatase inhibition and cytoskeletal disorganization in hepatocytes., European Journal of Biochemistry, 237(3), 491-497.
- Li, X. Y., Chung, I. K., & Kim, J. I. (2003)., Synergistic toxic effects of microcystin and chlorinated phenolic compounds on plant and animal cells., Toxicology, 187(1), 67-78.
- Chen, W., Song, L., Gan, N., & Li, L. (2004)., Optimization of an effective extraction procedure for the analysis of microcystins in soils and animal tissues., Environmental Pollution, 127(3), 423-429.
- Malbrouck, C., & Kestemont, P. (2006)., Effects of microcystins on fish., Environmental Toxicology and Chemistry: An International Journal, 25(1), 72-86.
- Ghosh, S., Mohapatra, T., & Tiwari, D. N. (2008)., Microcystis aeruginosa: Characteristics, Toxicity and Health Hazards., Journal of Environmental Biology, 29(1), 43-49.
- Ray, S., & Bagchi, S. N. (2001)., Oscillatoria laetevirens var. minimus: An Ecofriendly Bioremediator for Ammonia in Aquatic Environments., Journal of Applied Phycology, 13(3), 285-292.
- Banerjee, S., Mazumdar, S., & Ray, K. (2013)., Anabaena fertilissima: Morphological and Genetic Diversity., Journal of Phycology, 49(2), 365-370.
- Bagchi, S. N., & Verma, V. (1997)., Phormidium uncinatum: Potential Use in Bioremediation of Heavy Metals., Environmental Science & Technology, 31(1), 273-276.
- Saggu, M., Kumar, R., & Singh, J. (2010)., Synechococcus elongatus: A Cyanobacterial Strain with Antioxidant Properties., Indian Journal of Experimental Biology, 48(4), 379-385.
- MacKinney, G. (1941)., Absorption of Light by Chlorophyll Solutions., Journal of Biological Chemistry, 140, 315-322.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951)., Protein measurement with the Folin phenol reagent.3 J biol Chem, 193(1), 265-275., undefined
- Jungblut, A. D., & Neilan, B. A. (2006)., Methods for the Isolation of Cyanobacterial DNA., Methods in Molecular Biology, 353, 83-91.
- Kumar, S., Stecher, G., & Tamura, K. (2016)., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets., Molecular biology and evolution, 33(7), 1870-1874.
- Bagchi, S. N., & Ghosh, M. (2010)., Development of forward and reverse primer pairs for amplification of target genes in cyanobacteria., Journal of Molecular Microbiology and Biotechnology, 18(2), 89-97.
- Ghosh, M., Pan, G., & Sun, X. (2008a)., Laboratory cultures of Microcystis aeruginosa., Environmental Science and Pollution Research, 15(6), 509-516.
- Ray, S., & Bagchi, S. N. (2001)., Laboratory cultures of Oscillatoria laetevirens var. minimus., Journal of Applied Phycology, 13(5), 463-473.
- Banerjee, M., Mishra, S., & Banerjee, S. (2013)., Laboratory cultures of Anabaena fertilissima., Algal Research, 2(1), 15-23.
- Bagchi, S. N., & Verma, S. (1997)., Laboratory cultures of Phormidium uncinatum., Indian Journal of Experimental Biology, 35(9), 953-958.
- Saggu, S., Singh, R., Sharma, P., & Kumar, A. (2010)., Laboratory cultures of Synechococcus elongatus., Journal of Experimental Biology, 213(18), 3286-3294.
- Pearson, L. A., Moffitt, M. C., & Neilan, B. A. (2004)., Amplification of genes mcyABDE in cyanobacteria., Environmental Microbiology, 6(4), 415-428.
- Christiansen, G., Fastner, J., & Erhard, M. (2006)., Amplification of mcy genes in cyanobacteria., Environmental Microbiology, 8(3), 391-400.
- Dolman, A. M., Visser, P. M., & Janse, I. (2012)., Harmful cyanobacterial blooms in eutrophicated lakes., Harmful Algae, 20, 1-17.
- World Health Organization. (2003)., Algae and cyanobacteria in fresh water., WHO Guidelines for Drinking-water Quality, 3rd edition.
- Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (2002)., Harmful algal blooms and their impact on the environment., Ecological Applications, 12(1), 200-217.
- Londt, D., & Pflugmacher, S. (2020)., Activation of mcy genes in natural conditions., Environmental Toxicology and Chemistry, 39(4), 926-938.
- Chia, M. A., Onodera, H., & Kumar-Kannaian, G. (2019)., Activation of microcystin synthesis genes., Environmental Toxicology and Chemistry, 38(5), 1080-1091.
- Paerl, H. W. (2018)., Microcystin synthesis in cyanobacteria., Science of the Total Environment, 635, 230-239.
- Zhang, Q., et al. (2009)., Activation of microcystin synthesis genes., Water Research, 43(20), 5181-5189.
- Chaturvedi, A., Singh, B. P., & Rai, A. K. (2015)., Microcystin levels in laboratory-cultivated cyanobacteria., Journal of Applied Phycology, 27(2), 805-812.
- Agrawal, M. K., Bagchi, S. N., & Bagchi, D. (2006)., Microcystin production in laboratory cultures., Journal of Phycology, 42(3), 618-624.
- Ghosh, M., Bagchi, D., & Singh, S. P. (2008b)., Microcystin in laboratory and natural conditions., Environmental Science and Pollution Research, 15(6), 509-516.
- Chaturvedi, A., Sharma, N. K., & Rai, A. K. (2017)., Higher microcystin levels in natural samples., Journal of Applied Phycology, 29(5), 2455-2465.
- Singh, S. P., Asthana, R. K., & Rai, A. K. (2017)., Microcystin levels in natural scums and mats., Environmental Monitoring and Assessment, 189(10), 511.