Computational Modelling of Antimicrobial Efficacy against Staphylococcus aureus Using Structure-Activity Analysis
Author Affiliations
- 1GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC ‘A’ Grade), MGS University, Bikaner (Raj.) 334001 India
- 2GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC ‘A’ Grade), MGS University, Bikaner (Raj.) 334001 India
- 3GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC ‘A’ Grade), MGS University, Bikaner (Raj.) 334001 India
- 4GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC ‘A’ Grade), MGS University, Bikaner (Raj.) 334001 India
Res. J. Forensic Sci., Volume 14, Issue (1), Pages 7-11, January,29 (2026)
Abstract
The field of computational drug discovery employs Quantitative Structure-Activity Relationship (QSAR) methodologies to construct mathematical models that correlate molecular characteristics with biological effectiveness. These computational approaches enable researchers to understand how specific chemical features influence therapeutic outcomes, thereby facilitating rational drug development strategies. This investigation focused on constructing a predictive framework to estimate the antibacterial potency of 24 chemical entities against Staphylococcus aureus. The antimicrobial effectiveness was quantified through Minimum Inhibitory Concentration (MIC) measurements, while computational molecular parameters were utilized to establish the predictive framework. The entire QSAR analysis was conducted using ChemMaster 1.2 computational platform.
References
- Shah, M., Patel, M., Shah, M., Patel, M., & Prajapati, M. (2024)., Computational transformation in drug discovery: A comprehensive study on molecular docking and quantitative structure activity relationship (QSAR)., Intelligent Pharmacy, 2, 589-595.
- Cronin, M. T. D., & Schultz, T. W. (2003)., Pitfalls in QSAR., Journal of Molecular Structure: THEOCHEM, 622, 39-51.
- Golbraikh A., & Tropsha, A. (2002)., Beware of q2!., Journal of Molecular Graphics & Modelling, 20, 269-276.
- De, P., & Roy, K. (2021)., QSAR and QSAAR modeling of nitroimidazole sulfonamide radiosensitizers: Application of small dataset modeling., Structural Chemistry, 32, 631-642.
- Mishra, R., Chaurasia, H., Singh, V. K., Naaz, F., & Singh, R. K. (2021). Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. Journal of Molecular Structure, 1243, 1-13., undefined, undefined
- Özbek, N., Alyar, S., Alyar, H., Sahin, E., & Karacan, N. (2013)., Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 108, 123-132.
- Harsh, N. K., Beniwal, R. C., Sharma, S. D., Saran, R. K., & Bhojak, N. (2022)., QSAR study of 8-Hydroxyquinoline and its Chloro derivatives as antimicrobial agents., Bulletin of Environment, Pharmacology and Life Sciences, Special Issue (1), 1627-1629.
- Tebbaai, H., El Hamdani, N., Byadi, S., & Aboulmouhajir, A. (2024)., Predicting antibacterial activity of some Curcumin compounds: Fingerprint-based 2D-QSAR models., Scientific African, 26, 1-17.
- Yanga, W., Yia, J., Maa, Z., & Sun, W. H. (2017)., 2D-QSAR modeling on the catalytic activities of 2-azacyclyl-6-aryliminopyridylmetal precatalysts in ethylene oligomerization., Catalysis Communications, 101, 40-43.
- Chen, B., Zhang, T., Bond, T., & Gan, Y. (2015)., Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources., Journal of Hazardous Materials, 299, 260-279.
- Abramenko, N., Kustova, L., Metelytsia, L., Kovalishyn, V., Tetko, I., & Peijnenburg, W. (2020)., A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids., Journal of Hazardous Materials, 384, 1-14.
- Zhang, F., Wang, Z., Peijnenburg, W. J. G. M., & Vijver, M. G. (2023)., Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles., Environment International, 177, 1-9.
- Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., & Dhake, A. (2004)., Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations., European Journal of Medicinal Chemistry, 39, 827-834.
- Singh, V. K., Chaurasia, H., Mishra, R., Srivastava, R., Naaz, F., Kumar, P., & Singh, R. K. (2022)., Docking, ADMET prediction, DFT analysis, synthesis, cytotoxicity, antibacterial screening and QSAR analysis of diarylpyrimidine derivatives., Journal of Molecular Structure, 1247, 1-16.
- Hemalatha, T., Imran, P. K. M., Gnanamani, A., & Nagarajan, S. (2008)., Synthesis, antibacterial and antifungal activities of some N-nitroso-2,6-diarylpiperidin-4-one semicarbazones and QSAR analysis., Nitric Oxide, 19, 303-311.
- Devi, J., Pachwania, S., Yadav, J., & Kumar, A. (2021)., Pentacoordinateddiorganotin (IV) complexes resulting from tridentate (NOO) donor Schiff bases: Synthesis, characterization, in vitro antioxidant, antimicrobial activities, and QSAR studies., Phosphorus, Sulfur, and Silicon and the Related Elements, 196, 119-132.
- Matveieva, M., & Polishchuk, P. (2021)., Benchmarks for interpretation of QSAR models., Journal of Cheminformatics, 13, 1-20.
