International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Petrography and heavy mineral studies of Miocene Bhuban siliciclastics in parts of Surma Basin, Northeast India

Author Affiliations

  • 1Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India
  • 2Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India
  • 3Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India

Int. Res. J. Earth Sci., Volume 9, Issue (2), Pages 9-19, August,25 (2021)


Miocene Bhuban Siliciclastics in parts of Surma Basin has been studied with respect to their modal composition and heavy mineral contents so as to document the tectonic provenance and paleoclimate. Mineralogically Bhuban siliciclastics has been characterized as Qt34 F15RF8 M7 MX17 Ct18 HM1 and thus qualify for clean (lithic to sub arkose) and wacke (arkosic wacke) sandstone types. Presence of undulatory quartz, recycled non-undulatory quartz, chert, physillite and feldspars (alkali & plagioclase) has been attributed to mixed source terrain comprising igneous, sedimentary and metamorphic rock types. Further occurrence of zircon, tourmaline, rutile and garnet suggests derivation from both felsic and mafic igneous rocks. Different shapes and sizes of heavy minerals including garnet, sillimanite, staurolite, kyanite, scapolite, glaucophane, phlogopite, sphene, wollastonite, chlorite, chondrodite and hedenbergite in Bhuban siliciclastics signifies overall regionally metamorphosed source rock with subordinate contributions from contact dolomitic marble and skarn deposits. Low ZTR value (15.15%) of Bhuban Siliciclastics is indicative of mineralogically immature nature of sediments. A semi-humid to semi-arid paleoclimateis is suggested with major contributions from the nearby Indo-Myanmar and the Himalayan orogens.


  1. Parvin A., Woobaidulla A.S.M. and Rahman J.M. (2019)., Sequence stratigraphic analysis of the Surma Group in X Gas Field, Surma Basin, Bengal Delta., J. Nepal Geol. Soc., 58, 39 -52.
  2. Hiller K. and Elahi M. (1984)., Structural development and hydrocarbon entrapment in the Surma Basin, Bangladesh (Northwest Indo Burman fold belt)., In: Proceedings of 5th offshore South East Asia conference Singapore, 650 -663.
  3. Dasgupta S. (1984)., Tectonic trends in Surma basin and possible genesis of the folded belt., Rec. Geol. Surv. India, 113(IV), 58-61.
  4. Uddin A. and Lundberg N. (1998)., Unroofing history of the eastern Himalaya and the Indo-Burman Ranges: Heavy mineral study of Cenozoic sediments from the Bengal Basin, Bangladesh., Journal of Sedimentary Research, 68(3), 465-472.
  5. Bhaduri A. (2011)., State Geological and Mineral Maps - Geological Survey of India Miscellaneous Publication Series.,
  6. Karunakaran, C. (1974)., Geology and mineral resources of the states of India. Part IV-Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura., Geol. Surv. India Misc. Publ, 30(4), 93-101.
  7. J. L. Ganju (1975)., Geology of Mizoram., Geol. Mineral. & Metallurg. Soc. India, Bull. 48, 17-26 (1975).
  8. Dickinson, W. R. (1970)., Interpreting detrital modes of graywacke and arkose., Journal of Sedimentary Research, 40(2), 695-707.
  9. Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D. and Sares S.W. (1984)., The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting., J. Sedim. Res., 54, 103-116.
  10. Folk R.L. (1980)., Petrology of sedimentary rocks., Hamphill’s, Austin, Texas, 182. Hemphill publishing company.
  11. Middleton G.V. (2003)., Encyclopedia of sediments and sedimentary rocks., Springer, New York, 821.
  12. McBride E.F. (1963)., A classification of common sand-stones., Jour. Sed. Petrology, 33, 664-669.
  13. Pettijohn F. J. (1957)., Sedimentary Rocks., Second Edition: New York, Harper Brothers, 718.
  14. Pettijohn, F. J., Potter, P. E., & Siever, R. (1987)., Sandy Depositional Systems., Sand and Sandstone, 341-423. Springer, New York, NY.
  15. Pettijohn F.J., Potter P.E. and Siever R (1972)., Sand and sandstone., Springer, New York, 618.
  16. Williams H., Turner F.J. and Gilbert C.M. (1954)., Petrography, San Francisco: Freeman, 406., undefined
  17. Hubert J.F. (1962)., A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones., J. Sedim. Res., 32(3), 440-450.
  18. Dickinson W.R. and Suczek C.A. (1979)., Plate tectonics and sandstone composition., Bull. Am. Assoc. Petrol. Geol., 63(12), 2164-2182.
  19. Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavek J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A. and Ryberg P.T. (1983)., Provenance of North American Phanerozoic sandstones in relation to tectonic setting., Geol. Soc. Am. Bull., 94(2), 222-235.
  20. Nechaev V.P. and Isphording W.C. (1993)., Heavy mineral assemblages of continental margins as indicators of plate tectonic environment., J. Sedim. Petrol., 63(6), 1110-1117.
  21. Suttner L.J. and Dutta P.K. (1986)., Alluvial sandstone composition and palaeoclimate. Framework mineralogy., J. Sedim. Petrol., 56(3), 329-345.