International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Atmospheric Correction Algorithms for Hyperspectral Imageries: A Review

Author Affiliations

  • 1Department of Civil Engineering, AmalJyothi College of Engineering, Kanjirappally, Kerala, 686518, INDIA
  • 2 Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, INDIA

Int. Res. J. Earth Sci., Volume 3, Issue (5), Pages 14-18, May,25 (2015)


Hyperspectral image analysis has matured into one of the most potent and quickest growing technologies within the field of remote sensing over the past decade. Rich source of information produced in the form of spectrum at each pixel, can be used to identify surface materials. Intervening atmosphere poses an obstacle for retrieval of data, the atmospheric effects should be removed, to utilize the information for quantitative purposes. Over the years, the atmospheric correction algorithms have evolved from applied math approach to ways supported on rigorous radiative transfer modelling. They are used for the estimation of the signal below the atmosphere based on the signal quantified at the top of the atmosphere. Applied math approaches scale back atmospheric effects by empirical models that merelydepend upon statistics of image. The radiative transfer models are made at sensor radiance utilizing physics based radiative transfer equations and data from atmospheric and sun information archives. Radiative models utilize physical characteristics of the atmosphere to derive water vapour, aerosol, and mixed gas contributions to the atmospheric signal. More recently, researchers have used combinations of applied math approaches and radiativetransfer modelling approaches for the derivations of surface reflectance. This paper reviews hyperspectral atmospheric correction algorithms developed during the past years. An idealized universal atmospheric correction system has not been developed yet. Some critical elements are still lacking and need to be improved for a complete atmospheric processing.


  1. Marcus B., William S.H. and Russell W., Hyperspectral Remote Sensing Principles and Applications, CRC press, Taylor and Francis Group, London, New York, ISBN 978566706544 (2008)
  2. Gao B.C., Montes J.M., Davis C.O. and Goetz A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean, Remote Sensing of Environment, 113, S17–S24 (2009)
  3. Kruse F.A., Raines G.I. and Watson K., Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data, Proceedings of the 4th thematic conference on remote sensing for exploration geology, Ann Arbor, MI (1985)
  4. Roberts D.A., Yamaguchi Y. and Lyon R. Comparison of various techniques for calibration of AIS data. In Proc. of the 2nd Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication Laboratory, Pasadena, CA, 21–30 (1986)
  5. Conel J.E., Green R.O., Vane, G., Bruegge C.J. and Alley R.E., Airborne Imaging Spectrometer-2: Radiometric Spectral Characteristics and Comparison of Ways to Compensate for the Atmosphere, SPIE, 834, 140-157 (1987)
  6. Bernstein L.S., Adler-Golden S.M., Sundberg R.L., Levine R.Y., Perkins T.C., Berk A., Ratkowski, A.J., Felde G. and Hoke M.L., A New Method for Atmospheric Correction and Aerosol Optical Property Retrieval for VIS-SWIR Multi- and Hyperspectral Imaging Sensors: QUAC (QUick Atmospheric Correction). Geoscience and Remote Sensing Symposium, IEEE International,5, 3549-3552 (2005)
  7. Kneizys F.X., Shettle E.P., Abreau L.W., Chetwynd J. H., Anderson G.P., Gallery W.O., Selby E.A. and Clough S.A., Users guide to LOWTRAN-7.In AFGL-TR-8-0177 Air Force Geophysics Laboratories, Bedford, Massachusett (1988)
  8. Berk A., Bernstein L.S. and Robertson D.C., MODTRAN: a moderate resolution model for LOWTRAN7. Final report, GL-TR-89-0122, AFGL, Hanscom AFB, MA, 42 (1989)
  9. Tanre D., Deroo C., Duhaut P., Herman M. And Morcrette J.J., Description of a computer code to simulate the satellite signal in the solar spectrum - The 5S code. International Journal of Remote Sensing, 11, 659-668, (1990)
  10. Vermote E.F., Tanre D., Deuze J.L., Herman M. And Morcrett J.J., Second simulation of the satellite signal in the solar spectrum, 6S: an overview, IEEE Transactions on Geoscience and Remote Sensing, 35, 675-686 (1997)
  11. Shettle E.P. and Weinman J.A., The transfer of solar irradiance through in homogeneous turbid atmospheres evaluated by Eddington’s approximation, Journal of atmospheric sciences, 27, 1048-1055 (1970)
  12. Liou K.N., A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: application to cloud and hazy atmospheres, Journal of Atmospheric Sciences, 30,1303-1326 (1973)
  13. Collins, D.G., Blattner, W.G., Wells, M.B. and Horak, H.G. Backward Monte Carlo calculations of the polarization characteristics of the radiation emergingfrom spherical-shell atmospheres, Applied Optics, 11(11), 2684-2696 (1972)
  14. Benassi M., Garcia R.D.M., Karp A.H. and Sievert C.E., A high-order spherical harmonics solution to the standard problem in radiative transfer, The Astrophysical Journal, 280, 853-864, (1984)
  15. Gao B.C., Heidebrecht K.B. and Goetz A.F.H., Derivation of Scaled Surface Reflectances from AVIRIS Data, Remote Sens. Environ., 44, 165–178 (1993)
  16. Gao B.C. and Goetz A.F.H., Column Atmospheric Water Vapour and Vegetation Liquid Water Retrievals from Airborne Imaging Spectrometer Data, J. Geophys., 95(D4),3549–3564 (1990)
  17. 7.Malkmus W., Random Lorentz band model with exponential-tailed S line intensity distribution function,Journal of the Optical Society America, 57, 323 329 (1967)
  18. Rothman L.S. and Gamache R.R. et al., The HITRAN molecular database: editions of 1991 and 1992, Journal of Quantitative Spectroscopy and Radiative Transfer, 48, 469-507 (1992)
  19. Gao B.C. and Davis C.O., Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers, SPIE Proceedings, 3118, 132 141 (1997)
  20. Rothman L.S., Barbe A., Benner D.C., Brown L.R., Camy-Peyret C. And Carleer M.R., The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, Journal of Quantitative Spectroscopy and Radiative Transfer, 82, 5 44 (2003)
  21. Rothman L.S., Jacquemart D., Barbe A., Benner D.C., Birk M. and Brown L.R., et al. The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 96, 139 204 (2005)
  22. Richter R., A spatially adaptive fast atmosphere correction algorithm, International Journal of Remote Sensing, 11, 159–166 (1996)
  23. Richter R. Correction of satellite imagery over mountainous terrain, Applied Optics, 37, 4004 4015 (1998)
  24. Richter R. And Schlaepfer D., Geo-atmospheric processing of airborne imaging spectrometry data, Part 2: atmospheric/topographic correction, International Journal of Remote Sensing, 23(13), 2631 2649 (2002)
  25. Adler-Golden S.M., Berk A., Bernstein L.S., Richtsmeier S, Acharya P.K., Matthew M.W, Anderson G.P., Allred, C., Jeong, L. and Chetwynd, J. Flaash, A Modtran4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations. Proc. 7th Ann. JPL Airborne Earth Science Workshop, JPL Publication Pasadena, Calif., 97-21, 9–14 (1998)
  26. Staenz K., Szeredi, T. and Schwarz, J. ISDAS - a system for processing/ analysing hyperspectral data. Technical note, Canadian Journal of Remote Sensing, 24, 99 113 (1998)
  27. Qu Z., Goetz A.F.H. and Heidbrecht K.B., High accuracy atmosphere correction for hyperspectral data (HATCH). Proceedings of the Ninth JPL Airborne Earth Science Workshop JPL-Pub 00-18, 373-381 (2001)
  28. Qu Z., Kindel B.C. and Goetz A.F.H., The High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) Model, IEEE Transactions on Geoscience and Remote Sensing, 41, 1223-1231 (2003)
  29. Lacis A.A. and Oinas V., A description of correlated k distribution method for modelingnongray gaseous absorption, thermal emission, and multiple scattering in vertically in homogeneous atmospheres, J. Geophys, 96, 9027-9063 (1991)
  30. Clough S.A. and Iacono M.J., Line-by-line calculation of atmospheric fluxes and cooling rates: Application to carbon-dioxide, ozone, methane, nitrous-oxide and the halocarbons, J. Geophys., 100, D8, 16519-16535 (1995)
  31. ACORN 4.0, User’s Guide, Analytical Imaging and Geophysics, LLC, Boulder, (2002)
  32. Lenot X., Achard V. and Poutier L., SIERRA: A new approach to atmospheric and topographic corrections for hyperspectral imagery, Remote Sensing of Environment, 113, 1664–1677 (2009)
  33. Clark R.N., G.A Swayze, K.B. Heidebrecht, R.O. Green and A.F.H. Goetz, Calibration to surface reflectance of terrestrial imaging spectrometry data: Comparison of methods, Summaries of the Fifth annual JPL Airborne Earth Science Workshop, 1, 41-42 (1995)
  34. Ben-Dor E., Kindel B. and Goetz A.F.H., Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data, Remote Sensing of Environment, 90, 389-404 (2004)
  35. Tuominen J. and Lipping T., Atmospheric correction of hyperspectral data using combined empirical and model based method. Proceedings of the 7th EARSeL SIG Imaging Spectroscopy workshop, Edinburgh (2011)
  36. Seidel F., Schläpfer D., Nieke J. And Itten K.I., Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing, Sensors, 8(3), 1901-1914 (2008)
  37. Achard V. and Lesage S. Atmospheric correction of airborne infrared hyperspectral images using neural networks. IEEE, 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland (2010)