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Abstract 

The cytoskeleton of eukaryotic cells is composed of several classes of protein polymers among which neuronal microtubules 

(NMTs) are the most prominent. The radical control of cellular processes in NMT system, that are cell division, intracellular 

trafficking, cellular morphogenesis process and also energy moved from one cell to another cell with least loss of energy. We 

investigate the excitations of soliton with small perturbation along the protofilaments that are governed by Discrete 

Nonlinear Schrodinger (DNLS) equation. We study the modulational instability analysis on microtubulin system under the 

influence of electric field with Toda potential. We perform a complete investigation of aninfluence of Toda potential of 

tubulin dimers in the development of energy localization that has the form of breather-like soliton excitations in the neuronal 

microtubulinprotofilament. The evolution of the localized wave is expected to explore a very interesting physical phenomenon 

such as energy transfer mechanism in biological systems. 
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Introduction 

Neuronal cells undertake most important developmental 

variations, such as migrate, synaptic connections, axons and 

also in dendrites. The formation of neuronal polarity and 

preserving of axonal integrity functions are most important at 

the structural organization and dynamic remodeling of the 

neuronal microtubulin cytoskeleton1. Cytoskeleton is 

responsible for the structural organization of the interior of the 

neuronal cell. It is made up of microfilaments (MFs), 

intermediate filaments (IFs) and microtubules (MTs), each 

having a specific physical property and structure suitable for 

their role2. And without neuron, MTs could not maintain its 

structural shape of cells3. The significant relation of assembly/ 

disassembly and transport properties in microtubulin systems 

are the organization of migratory neurons, dendrites, axons and 

growth cones with the value of intrinsic polarity, such as 

segregating the chromosomes during cell division and support 

the motor proteins that are kinesins and dyneinsto which is 

produce the force essential for cell motions, shape changes and 

acting as significant targets for anticancer drugs4. 

 

The microtubules can grow upto 25 nm long and is has the 

shape of hollow cylinder which is shown in Figure-1. An 

interior of biological cells are highly arranged in a systematic 

ways of both structure and dynamics, the NMT cylinder has 

contain the rich in water molecules and which require the 

existence of an electric dipoles, static and dynamic electric 

fields and also the outer surface is bordered by the organization 

of cytoplasmic water and enzymes. Along the NMT axis, with 

alternating subunits (α and β) of tubulin hetrodimers are end to 

end joined to form protofilaments. The wall of NMT is made up 

of 13 identical protofilaments4. 

 

 
Figure-1: Structural subunits of microtubule. 

 

The neuronal microtubulin system has a strong unidirectional 

insulator. The periodic arrangement of dimers can be assumed a 

degree of freedom, it is depend on an angle or longitudinal co-

ordinate and the net polarization5. The structure of the NMTs is 

also has the nonlinear nature. Generally, the nonlinear organized 

systems can produce advanced harmonic components and 

components with frequency combination and also allow the 

energy transportation. In this paper we will put theoretical 

model based on work as follows: we build next section in the 

model Hamiltonian of the system and develop the DNLS 
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equation that governs the dynamics of MTs. In another section, 

we carry out the modulational instability (MI) with aid of 

stability analysis in NMTs under the effect of an internal cell 

electric field with toda potential and the results are concluded in 

conclusion section. 

 

The model Hamiltonian and dynamical equation 

Thus the nth tubulin molecule of a protofilament can be 

approximately expressed by the following toda potential. 
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Equation (1) represents the toda potential which is described by 

the overall effect on the nth site dipoles, here K2 represents the 

linear spring constant of a NMTs and b stands for the inverse 

width of a Toda potential well. The total effective Hamiltonian 

describing the large oscillations of the dimer in a NMT is thus 

given by 
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The first term in Equation (2) denotes longitudinal displacement 

of dimers represented as kinetic energy term, here m and n 

represent as mass of each dimer and position of the 

protofilament. The overdotis atime derivative order one. The 

followed second term represents the restoring strain forces in 

between the adjacent dimers in the protofilament and this force 

term describe the potential energy appear attribute to chemical 

interaction among  nearest two dimers, K1 represent an intra-

dimer stiffness. The third term represents as intrinsic electric 

field ( E
ur

) in dimers with the electric dipole at NMT cylinder, it 

having the potential energy
n

.

(U p.E qlE cos )= − = 
r ur . By the third 

term q denotes the extra charge inside the electric dipole,l 

denotes the dimer length and here E > 0,q > 0. For large 

oscillations using Hamiltonian in NMT, the Hamilton’s equation 

of motion will directly yield, 
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In Equation (3) is very hard to solve because of its discreteness 

and nonlinearity and it has various nonlinear phases and 

different nonlinear couplings. So, we analyzing system behavior 

through the Rotating Wave Approximation (RWA) with our 

model equation of motion6-9. 
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where ω0 stands for linear frequency of oscillation. Thus, we 

could call upon RWA to the discrete equation of motion in 

Equation (4).  
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The obtained Equation (5) is often called as a DNLS equation, it 

is very fascinating role in modern science and technology. The 

DNLS equation is a well-known non integrable model which 

has a number of applications in molecular Physics, nonlinear 

optics, and in other fields10,11. Generally, DNLS equation is one 

of the easily understanding soliton type equation at the 

combined effects of dispersion and nonlinearity. Therefore, 

DNLS equation is exhibits the chaotic dynamics in the certain 

regimes, continuous translational symmetry and integrable 

nature brooked at the simultaneously due to discretization 

effect. Here, we have studied in the present section fordynamics 

of NMTs structure which can be described by the DNSLS 

equation and further, from which we paid to study thediscrete 

modulational instability analysisin the next section. 

 

Modulational Instability Analysis in NMTs 

Using finite difference method in Equation (5). The constant 

amplitude solution12,13. 

1i(k n t )

n 0e
−

 =                  (6) 

In above equation manifests MI is most important plane wave 

solution of Equation (5). Here 0 is amplitude which treated as a 

constant, ω is an angular frequency andk1is wave number. In 

order to substituting Equation (6) into Equation (5), gives 

appropriate nonlinear dispersion relation, 
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To the initially solution is little perturbed and learn small 

perturbation grows with propagation are the essential thought of 

linear stability analysis.  The perturbed amplitude slightly small 

associated with the initial plane wave, is suitable for linear 

stability analysis. This analysis is provide the small perturbation 

amplitude with the early wave amplitude. So, we adopt initial 

plane wave to investigate in MI. For the stability properties of 

small perturbation inserted into initial plane wave solution, we 

have 
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Where n as small perturbation is compared to 0 . We 

substitute the above solution into Equation (5), and keeping only 

linear terms, then, we obtain the first-order differential equation 

as, 
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The perturbed wave solution written from the Equation (9), we 

get 

*i(Qn t) * i(Qn t)

n 1 2e e .− − − =  +
              

 (10) 

 

Where * means complex conjugate, Q is the perturbation wave 

vector and Ω represent the perturbation frequency. Inserting 

Equation (10) into Equation (9) provides a linear homogeneous 

system for 1  and *
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Now, we can write the coefficients of the 2 × 2 matrix as 

followed by 
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where,               (13) 
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Equations (11 & 12) has the nontrivial solution of linear 

homogeneous system and its determinant vanishes. This gives 

second order equation condition 
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Obviously, equation (14) has the solution 

2
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the perturbation growth rate written as 

 

2
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Relation (16) represents the MI gain for plane waves in the 

system of NMT lattices which is described by the DNLS 

equation. In this equation, Im is the imaginary part and if 

unstable amplitude solution begins to arise the localized 

structures else not possible it. The gain Ω depend on the α, β, γ, 

ε1 which is play essential role of MI, also occur stability in 

imaginary part and controls the stability/instability of a 

perturbation of wave number (Q) in Equation (16). Figure-2 

shows that instability gain spectrum with to set the suitable 

parameters q=0 in the.1 C, l=1 m, m=1.1 kg m-2, K1=0.1 Nm-1, 

K2=10 Nm-1, E=5 × 10-5 Nm-1, ω0 =5.01 and b=0.1. In the 

inverse width of the toda potential, stability and instability area 

has been explored clearly in Figures-2, here dark bluish region 

represented as stable in the modulated any wave number (Q) 

and also in the nonlinear plane wave and the reddish region 

represented as the unstable in the amplitude of modulated wave, 

it is estimated to abruptly exhibit an exponential like growth. 

Figures-2, clearly shows from domains of MIappears to be 

better as the value of inverse width of toda potential increases 

from b=0.1 to b=0.8, thus decreasing the instable nature of 

propagating plane wave in neuronal microtubules. In Figure-2, 

shows the instability region initially maximum of perturbed 

wave after that this region significantly changes with b 

increasing in the NMT and eventually strong stability appear in 

the modulated plane waves. It is revealed from Figures-2 that, 

the play-role of inverse width of toda potential leads to the 

stability and succeeding arrangement of intrinsic localized 

structures. 

 

Conclusion 

Exploring the nonlinear excitations in biological system still 

attracts deep interest. It contributes to illustrate biomolecular 

processors, such as the vibrational energy transport in dimers, 

energy localization and replication phenomenon in NMTs. The 

neuronal microtubulincytoskeleton has peripheral shape and the 

division of neurons that are structured and carry out its 

cytoplasm to motile and metabolic behavior of necessary life. In 

the between of dipole-dipole along neuronal microtubule 

protofilament, we formulated Hamiltonian using the toda 

potential. By using the Rotating wave approximation (RWA) 

technique, we derive the nonlinear dynamical equation into 

Discrete Nonlinear Schrodinger (DNLS). In viamodulational 

instability analysis, we get soliton localization of dipole 

oscillations in a NMT protofilament. According to acquired 

graphical analysis, we have discussed the process of bioenergy 

localizationin the role of essential cell electric field with toda 

potential. 
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(a)b=0.1   (b) b=0.2   (c) b=0.3   (d)b=0.4 

 
(e)b=0.5   (f) b=0.6   (g) b=0.7   (h) b=0.8 

 
Figure-2: The variation of Q with k1 for different values of b with to set the suitable parameters q=0.1 C, l=1 m, m=1.1 kg m-2, 

K1=0.1 Nm-1, K2=10 Nm-1, E=5 × 10-5 Nm-1and ω0 =5.01. 
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